Silin He, Jiran Zhu, Di Zhang, Shengpeng Liu, Luxin Zhan, Chun Chen
{"title":"Distributed self-healing control of single-phase grounding fault in neutral point non-effective grounding system","authors":"Silin He, Jiran Zhu, Di Zhang, Shengpeng Liu, Luxin Zhan, Chun Chen","doi":"10.1515/ijeeps-2023-0420","DOIUrl":null,"url":null,"abstract":"\n In distribution networks, single-phase grounding occurrences in non-effectively grounded systems do not result in short-circuits, thus leading to low fault currents. Particularly in high-resistance grounding scenarios, fault currents become extremely low, increasing the risk of protection misjudgments. To enhance the speed and accuracy of self-healing during such faults, a distributed self-healing control method based on flexible grounding and zero-sequence current analysis for non-effectively grounded systems is proposed. This method employs peer-to-peer distributed self-healing and flexible grounding techniques to convert isolated or arc-suppressed neutral systems to low-resistance grounded systems. Additionally, a localization criterion unaffected by neutral grounding modes is introduced, utilizing deviations in zero-sequence current upstream and downstream of the fault as distinguishing characteristics. The proposed method is straightforward in principle and leverages existing terminal equipment for accurate and swift fault processing. Simulation results validate the method’s resilience to transition resistance and neutral grounding conditions, demonstrating its suitability for single-phase grounding fault localization across all system types. The research findings effectively ensure the accuracy and swiftness of self-healing during single-phase grounding faults in non-effectively grounded systems.","PeriodicalId":45651,"journal":{"name":"International Journal of Emerging Electric Power Systems","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Emerging Electric Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ijeeps-2023-0420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In distribution networks, single-phase grounding occurrences in non-effectively grounded systems do not result in short-circuits, thus leading to low fault currents. Particularly in high-resistance grounding scenarios, fault currents become extremely low, increasing the risk of protection misjudgments. To enhance the speed and accuracy of self-healing during such faults, a distributed self-healing control method based on flexible grounding and zero-sequence current analysis for non-effectively grounded systems is proposed. This method employs peer-to-peer distributed self-healing and flexible grounding techniques to convert isolated or arc-suppressed neutral systems to low-resistance grounded systems. Additionally, a localization criterion unaffected by neutral grounding modes is introduced, utilizing deviations in zero-sequence current upstream and downstream of the fault as distinguishing characteristics. The proposed method is straightforward in principle and leverages existing terminal equipment for accurate and swift fault processing. Simulation results validate the method’s resilience to transition resistance and neutral grounding conditions, demonstrating its suitability for single-phase grounding fault localization across all system types. The research findings effectively ensure the accuracy and swiftness of self-healing during single-phase grounding faults in non-effectively grounded systems.
期刊介绍:
International Journal of Emerging Electric Power Systems (IJEEPS) publishes significant research and scholarship related to latest and up-and-coming developments in power systems. The mandate of the journal is to assemble high quality papers from the recent research and development efforts in new technologies and techniques for generation, transmission, distribution and utilization of electric power. Topics The range of topics includes: electric power generation sources integration of unconventional sources into existing power systems generation planning and control new technologies and techniques for power transmission, distribution, protection, control and measurement power system analysis, economics, operation and stability deregulated power systems power system communication metering technologies demand-side management industrial electric power distribution and utilization systems.