Xinglin Wu, Yang Jiao, Jieshi Wu, Sujiajun Zhang, Ruisheng Xu, Quanming Zhao, K. Lu, Pengpeng Zhang, Lu Zhang, Xiaohui Ni
{"title":"Preparation, Characterization, and Bioactivities of Cobalt, Strontium and Fluorine Co-Doped Oxide Films on Titanium Surface for Clinical Application","authors":"Xinglin Wu, Yang Jiao, Jieshi Wu, Sujiajun Zhang, Ruisheng Xu, Quanming Zhao, K. Lu, Pengpeng Zhang, Lu Zhang, Xiaohui Ni","doi":"10.1166/jbn.2024.3813","DOIUrl":null,"url":null,"abstract":"Titanium and titanium alloys are receiving widespread attention due to their excellent comprehensive mechanical properties, corrosion resistances, and biocompatibilities. However, titanium metal itself is biologically inert in physiological environments, and after implantation, it is\n surrounded by a layer of encapsulating fibrous membrane, making it difficult to form solid bonds with the tissue. Plasma electrolytic oxidation is a new technology used to prepare bioactive porous ceramic membranes on the surfaces of titanium and titanium alloys. It has application prospects\n for biomimetic surface modifications of titanium alloys. In this study, a cobalt, strontium and fluorine codoped oxide film (TAM-CSF) was prepared on a titanium surface via plasma electrolytic oxidation. The surface characteristics of the film were evaluated with field emission scanning electron\n microscopy, energy spectrum analyses, atomic force microscopy, profilometry and X-ray photoelectron spectroscopy. Additionally, the corrosion performance of the material was evaluated with an electrochemical workstation. The biocompatibility and bioactivity of the film were tested with in\n vitro cell experiments. The results showed that the TAM-CSF on the titanium surface had a porous morphology, and the CSF was uniformly doped on the film surface. TAM-CSF improved the surface roughness of the titanium. This film exhibited good biocompatibility and promoted the extension\n and proliferation of MC3T3-E1 cells. It was possible to prepare TAM-CSF on titanium surfaces via plasma electrolytic oxidation. The film exhibited a good morphology and good biological activity and has clinical application prospects.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"12 9","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1166/jbn.2024.3813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Titanium and titanium alloys are receiving widespread attention due to their excellent comprehensive mechanical properties, corrosion resistances, and biocompatibilities. However, titanium metal itself is biologically inert in physiological environments, and after implantation, it is
surrounded by a layer of encapsulating fibrous membrane, making it difficult to form solid bonds with the tissue. Plasma electrolytic oxidation is a new technology used to prepare bioactive porous ceramic membranes on the surfaces of titanium and titanium alloys. It has application prospects
for biomimetic surface modifications of titanium alloys. In this study, a cobalt, strontium and fluorine codoped oxide film (TAM-CSF) was prepared on a titanium surface via plasma electrolytic oxidation. The surface characteristics of the film were evaluated with field emission scanning electron
microscopy, energy spectrum analyses, atomic force microscopy, profilometry and X-ray photoelectron spectroscopy. Additionally, the corrosion performance of the material was evaluated with an electrochemical workstation. The biocompatibility and bioactivity of the film were tested with in
vitro cell experiments. The results showed that the TAM-CSF on the titanium surface had a porous morphology, and the CSF was uniformly doped on the film surface. TAM-CSF improved the surface roughness of the titanium. This film exhibited good biocompatibility and promoted the extension
and proliferation of MC3T3-E1 cells. It was possible to prepare TAM-CSF on titanium surfaces via plasma electrolytic oxidation. The film exhibited a good morphology and good biological activity and has clinical application prospects.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.