Enhancing the medical diagnosis of COVID-19 with learning based decision support systems

Mohammed Berrahal, Mohammed Boukabous, Mimoun Yandouzi, Mounir Grari, Idriss Idrissi
{"title":"Enhancing the medical diagnosis of COVID-19 with learning based decision support systems","authors":"Mohammed Berrahal, Mohammed Boukabous, Mimoun Yandouzi, Mounir Grari, Idriss Idrissi","doi":"10.11591/eei.v13i2.6293","DOIUrl":null,"url":null,"abstract":"Since late December 2019, the COVID-19 pandemic has had substantial impact and long-lasting impact on numerous lives. The surge in patients has overwhelmed hospitals and exhausted essential resources such as masks and gloves. However, in response to this crisis, we have developed a robust solution that can ease the burden on emergency services and manage the influx of patients. Our proposed framework comprises deep learning and machine learning models that can predict and manage patient demand with high accuracy. The first model, is specifically designed to classify computed tomography (CT) scan images for COVID or non-COVID cases. We trained multiple convolutional neural network (CNN) models on a large dataset of CT scan images and evaluated their performance on a separate test set. Our evaluation showed that the ResNet50 model was the most effective, achieving an accuracy of 93.28%. The second model uses patient measurements dataset to predict the likelihood of intensive care unit (ICU) admission for COVID-19 patients. We experimented with the XGBoost machine learning algorithm and found that the accuracy score achieved 88.40%.","PeriodicalId":37619,"journal":{"name":"Bulletin of Electrical Engineering and Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eei.v13i2.6293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Since late December 2019, the COVID-19 pandemic has had substantial impact and long-lasting impact on numerous lives. The surge in patients has overwhelmed hospitals and exhausted essential resources such as masks and gloves. However, in response to this crisis, we have developed a robust solution that can ease the burden on emergency services and manage the influx of patients. Our proposed framework comprises deep learning and machine learning models that can predict and manage patient demand with high accuracy. The first model, is specifically designed to classify computed tomography (CT) scan images for COVID or non-COVID cases. We trained multiple convolutional neural network (CNN) models on a large dataset of CT scan images and evaluated their performance on a separate test set. Our evaluation showed that the ResNet50 model was the most effective, achieving an accuracy of 93.28%. The second model uses patient measurements dataset to predict the likelihood of intensive care unit (ICU) admission for COVID-19 patients. We experimented with the XGBoost machine learning algorithm and found that the accuracy score achieved 88.40%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于学习的决策支持系统加强对 COVID-19 的医疗诊断
自 2019 年 12 月下旬以来,COVID-19 大流行已对无数人的生命产生了实质性和长期性的影响。激增的患者使医院不堪重负,并耗尽了口罩和手套等基本资源。然而,为了应对这场危机,我们开发了一种强大的解决方案,可以减轻急救服务的负担,并管理涌入的患者。我们提出的框架由深度学习和机器学习模型组成,能够高精度地预测和管理患者需求。第一个模型专门用于对计算机断层扫描(CT)图像进行 COVID 或非 COVID 病例分类。我们在一个大型 CT 扫描图像数据集上训练了多个卷积神经网络 (CNN) 模型,并在一个单独的测试集上评估了它们的性能。评估结果表明,ResNet50 模型最为有效,准确率达到 93.28%。第二个模型使用患者测量数据集来预测 COVID-19 患者入住重症监护室(ICU)的可能性。我们使用 XGBoost 机器学习算法进行了实验,发现准确率达到了 88.40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bulletin of Electrical Engineering and Informatics
Bulletin of Electrical Engineering and Informatics Computer Science-Computer Science (miscellaneous)
CiteScore
3.60
自引率
0.00%
发文量
0
期刊介绍: Bulletin of Electrical Engineering and Informatics publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: Computer Science, Computer Engineering and Informatics[...] Electronics[...] Electrical and Power Engineering[...] Telecommunication and Information Technology[...]Instrumentation and Control Engineering[...]
期刊最新文献
An optimistic-pessimistic game cross-efficiency method based on a Gibbs entropy model for ranking decision making units A study on the solution of interval linear fractional programming problem FPGA implementation of DTCWT architecture's high-speed DA structure for OFDM-based transceiver with CS Mathematics for 2D face recognition from real time image data set using deep learning techniques A comprehensive survey on several fire management approaches in wireless sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1