Franck Kalala Mutombo, Alice Nanyanzi, Simukai W. Utete
{"title":"Heat Kernel of Networks with Long-Range Interactions","authors":"Franck Kalala Mutombo, Alice Nanyanzi, Simukai W. Utete","doi":"10.1155/2024/6745905","DOIUrl":null,"url":null,"abstract":"<p>The heat kernel associated with a discrete graph Laplacian is the basic solution to the heat diffusion equation of a strict graph or network. In addition, this kernel represents the heat transfer that occurs over time across the network edges. Its computation involves exponentiating the Laplacian eigensystem with respect to time. In this paper, we expand upon this concept by considering a novel network-theoretic approach developed in recent years, which involves defining the <i>k</i>-path Laplacian operator for networks. Prior studies have adopted the notion of integrating long-range interactions (LRI) in the transmission of “information” across the nodes and edges of the network. Various methods have been employed to consider long-range interactions. We explore here the incorporation of long-range interactions in network analysis through the use of Mellin and Laplace transforms applied to the <i>k</i>-path Laplacian matrix. The contribution of this paper is the computation of the heat kernel associated with the <i>k</i>-path Laplacian, called the generalized heat kernel (GHK), and its employment as the basis for extracting stable and useful novel versions of invariants for graph characterization. The results presented in this paper demonstrate that the use of LRI improves the results obtained with classical diffusion methods for networks characterization.</p>","PeriodicalId":50653,"journal":{"name":"Complexity","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complexity","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/6745905","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The heat kernel associated with a discrete graph Laplacian is the basic solution to the heat diffusion equation of a strict graph or network. In addition, this kernel represents the heat transfer that occurs over time across the network edges. Its computation involves exponentiating the Laplacian eigensystem with respect to time. In this paper, we expand upon this concept by considering a novel network-theoretic approach developed in recent years, which involves defining the k-path Laplacian operator for networks. Prior studies have adopted the notion of integrating long-range interactions (LRI) in the transmission of “information” across the nodes and edges of the network. Various methods have been employed to consider long-range interactions. We explore here the incorporation of long-range interactions in network analysis through the use of Mellin and Laplace transforms applied to the k-path Laplacian matrix. The contribution of this paper is the computation of the heat kernel associated with the k-path Laplacian, called the generalized heat kernel (GHK), and its employment as the basis for extracting stable and useful novel versions of invariants for graph characterization. The results presented in this paper demonstrate that the use of LRI improves the results obtained with classical diffusion methods for networks characterization.
期刊介绍:
Complexity is a cross-disciplinary journal focusing on the rapidly expanding science of complex adaptive systems. The purpose of the journal is to advance the science of complexity. Articles may deal with such methodological themes as chaos, genetic algorithms, cellular automata, neural networks, and evolutionary game theory. Papers treating applications in any area of natural science or human endeavor are welcome, and especially encouraged are papers integrating conceptual themes and applications that cross traditional disciplinary boundaries. Complexity is not meant to serve as a forum for speculation and vague analogies between words like “chaos,” “self-organization,” and “emergence” that are often used in completely different ways in science and in daily life.