Analisis Opini Terhadap Aplikasi Riliv di Twitter Menggunakan Algoritma Naïve Bayes dan Random Forest

Diana Nurfitriana, Taufik Ridwan, A. Voutama
{"title":"Analisis Opini Terhadap Aplikasi Riliv di Twitter Menggunakan Algoritma Naïve Bayes dan Random Forest","authors":"Diana Nurfitriana, Taufik Ridwan, A. Voutama","doi":"10.33020/saintekom.v14i1.526","DOIUrl":null,"url":null,"abstract":"In the current era of technological advancement and the internet, people can easily access various information. This technological advancement brings innovation in the mental health field, such as services in the form of apps. This research conducts sentiment analysis using the Naïve Bayes and Random Forest algorithms. The study aims to analyze Twitter users’ opinions regarding the Riliv apps and compare the results of classification using Naïve Bayes and Random Forest. This research methodology uses the AI Project Cycle method. The data used is tweet data from Twitter with the keyword 'aplikasi riliv’. The dataset consisted of 1035 data, which was processed to produce 273 positive, 273 neutral, and 39 negative sentiments data. The Naïve Bayes and Random Forest algorithms were applied to compare the classification results of the two. The most optimal classification results are Naïve Bayes with SMOTE with the division of 90% training data and 10% testing data, which results in an accuracy value of 82.72%, a value of precision is 82.89% and a value of recall is 82.72%. Based on the results of the distribution of sentiment data, most users gave positive reviews and were knowledgeable about the Riliv application, while only a few were disappointed","PeriodicalId":359182,"journal":{"name":"Jurnal SAINTEKOM","volume":"11 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal SAINTEKOM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33020/saintekom.v14i1.526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the current era of technological advancement and the internet, people can easily access various information. This technological advancement brings innovation in the mental health field, such as services in the form of apps. This research conducts sentiment analysis using the Naïve Bayes and Random Forest algorithms. The study aims to analyze Twitter users’ opinions regarding the Riliv apps and compare the results of classification using Naïve Bayes and Random Forest. This research methodology uses the AI Project Cycle method. The data used is tweet data from Twitter with the keyword 'aplikasi riliv’. The dataset consisted of 1035 data, which was processed to produce 273 positive, 273 neutral, and 39 negative sentiments data. The Naïve Bayes and Random Forest algorithms were applied to compare the classification results of the two. The most optimal classification results are Naïve Bayes with SMOTE with the division of 90% training data and 10% testing data, which results in an accuracy value of 82.72%, a value of precision is 82.89% and a value of recall is 82.72%. Based on the results of the distribution of sentiment data, most users gave positive reviews and were knowledgeable about the Riliv application, while only a few were disappointed
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用奈维贝叶斯和随机森林算法对 Twitter 上的 Riliv 应用程序进行舆情分析
在当今科技进步和互联网时代,人们可以轻松获取各种信息。这种技术进步为心理健康领域带来了创新,如应用程序形式的服务。本研究使用 Naïve Bayes 算法和随机森林算法进行情感分析。研究旨在分析 Twitter 用户对 Riliv 应用程序的看法,并比较使用奈维贝叶斯和随机森林算法进行分类的结果。本研究方法采用人工智能项目周期法。使用的数据是来自 Twitter 的推文数据,关键词为 "aplikasi riliv"。数据集由 1035 个数据组成,经过处理后产生了 273 个正面情绪数据、273 个中性情绪数据和 39 个负面情绪数据。应用 Naïve Bayes 算法和随机森林算法来比较两者的分类结果。最优的分类结果是 Naïve Bayes 算法和 SMOTE 算法,其中训练数据占 90%,测试数据占 10%,结果准确率为 82.72%,精确率为 82.89%,召回率为 82.72%。根据情感数据的分布结果,大多数用户对 Riliv 应用程序给予了积极评价,并对 Riliv 应用程序有所了解,只有少数用户对 Riliv 应用程序感到失望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Penerapan Algoritma K-Means untuk Klasterisasi Produksi Budidaya Perikanan Provinsi Sulawesi Utara Implementasi Aplikasi Laporjalanku untuk Pemetaan dan Pelaporan Jalan Rusak di Wilayah Kota Tarakan Pengukuran Kematangan Keamanan Siber pada Perusahaan Teknologi Informasi dengan Framework Center for Internet Security Controls Klasifikasi Sentimen Terhadap Kualitas Aplikasi Bahan Ajar Digital Akademik Universitas Terbuka di Google Play Evaluasi Keamanan Teknologi Informasi Menggunakan Indeks Keamanan Informasi 5.0 dan ISO/EIC 27001:2022
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1