{"title":"Investigation of collision estimation with vehicle and pedestrian using CARLA simulation software","authors":"Mohammad Sojon Beg, Muhammad Yusri Ismail","doi":"10.15282/jmes.18.1.2024.11.0786","DOIUrl":null,"url":null,"abstract":"The effectiveness of object detection systems in diverse driving environments is crucial in the growing field of automotive safety. The increasing frequency of traffic accidents, especially at busy intersections with heavy traffic and limited visibility, highlights the pressing requirement for advanced vehicle detection systems. Prior to implementing the real-time experiment, it is advisable first to conduct a simulation in order to gain a deeper understanding of the practical implementation in real-time scenarios. On the other hand, this approach has the potential to reduce both time and cost significantly. The system utilised a software-based solution by implementing the CARLA simulator. This study aims to analyse vehicle detection at T-junctions, cross-junctions, and roundabouts using image data obtained from the CARLA platform. Subsequent analysis differentiates between vehicles and non-vehicle objects in the dataset. The model concludes by proposing Python-based integrative solutions to enhance object detection systems for diverse roads and atmospheric situations. The significance of this study is evaluating the probability of accidents by tracking key factors like vehicle speed, distance, and density on various road types. In future research, it will be essential to investigate how different weather conditions, including rain, haze, and low-light scenarios, affect on sensor performance, specifically LiDAR sensors. Advanced machine learning techniques are proposed to evaluate the effectiveness of the vehicle detection system in collecting key parameters like vehicle count, speed, and distance in junction and roundabout scenarios. These findings have important implications for the advancement of more efficient, context-aware detection systems in the automotive sector.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/jmes.18.1.2024.11.0786","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The effectiveness of object detection systems in diverse driving environments is crucial in the growing field of automotive safety. The increasing frequency of traffic accidents, especially at busy intersections with heavy traffic and limited visibility, highlights the pressing requirement for advanced vehicle detection systems. Prior to implementing the real-time experiment, it is advisable first to conduct a simulation in order to gain a deeper understanding of the practical implementation in real-time scenarios. On the other hand, this approach has the potential to reduce both time and cost significantly. The system utilised a software-based solution by implementing the CARLA simulator. This study aims to analyse vehicle detection at T-junctions, cross-junctions, and roundabouts using image data obtained from the CARLA platform. Subsequent analysis differentiates between vehicles and non-vehicle objects in the dataset. The model concludes by proposing Python-based integrative solutions to enhance object detection systems for diverse roads and atmospheric situations. The significance of this study is evaluating the probability of accidents by tracking key factors like vehicle speed, distance, and density on various road types. In future research, it will be essential to investigate how different weather conditions, including rain, haze, and low-light scenarios, affect on sensor performance, specifically LiDAR sensors. Advanced machine learning techniques are proposed to evaluate the effectiveness of the vehicle detection system in collecting key parameters like vehicle count, speed, and distance in junction and roundabout scenarios. These findings have important implications for the advancement of more efficient, context-aware detection systems in the automotive sector.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.