Incremental Concolic Testing of Register-Transfer Level Designs

IF 2.2 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE ACM Transactions on Design Automation of Electronic Systems Pub Date : 2024-03-30 DOI:10.1145/3655621
Hasini Witharana, Aruna Jayasena, Prabhat Mishra
{"title":"Incremental Concolic Testing of Register-Transfer Level Designs","authors":"Hasini Witharana, Aruna Jayasena, Prabhat Mishra","doi":"10.1145/3655621","DOIUrl":null,"url":null,"abstract":"Concolic testing is a scalable solution for automated generation of directed tests for validation of hardware designs. Unfortunately, concolic testing fails to cover complex corner cases such as hard-to-activate branches. In this paper, we propose an incremental concolic testing technique to cover hard-to-activate branches in register-transfer level (RTL) models. We show that a complex branch condition can be viewed as a sequence of easy-to-activate events. We map the branch coverage problem to the coverage of a sequence of events. We propose an efficient algorithm to cover the sequence of events using concolic testing. Specifically, the test generated to activate the current event is used as the starting point to activate the next event in the sequence. Experimental results demonstrate that our approach can be used to generate directed tests to cover complex corner cases in RTL models while state-of-the-art methods fail to activate them.","PeriodicalId":50944,"journal":{"name":"ACM Transactions on Design Automation of Electronic Systems","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Design Automation of Electronic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3655621","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Concolic testing is a scalable solution for automated generation of directed tests for validation of hardware designs. Unfortunately, concolic testing fails to cover complex corner cases such as hard-to-activate branches. In this paper, we propose an incremental concolic testing technique to cover hard-to-activate branches in register-transfer level (RTL) models. We show that a complex branch condition can be viewed as a sequence of easy-to-activate events. We map the branch coverage problem to the coverage of a sequence of events. We propose an efficient algorithm to cover the sequence of events using concolic testing. Specifically, the test generated to activate the current event is used as the starting point to activate the next event in the sequence. Experimental results demonstrate that our approach can be used to generate directed tests to cover complex corner cases in RTL models while state-of-the-art methods fail to activate them.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
寄存器传输级设计的增量协整测试
协程测试是一种可扩展的解决方案,用于自动生成定向测试,以验证硬件设计。遗憾的是,协程测试无法覆盖复杂的角情况,如难以激活的分支。在本文中,我们提出了一种增量协程测试技术,以覆盖寄存器传输层(RTL)模型中难以激活的分支。我们表明,复杂的分支条件可被视为一系列易于激活的事件。我们将分支覆盖问题映射为事件序列的覆盖问题。我们提出了一种使用协程测试来覆盖事件序列的高效算法。具体来说,为激活当前事件而生成的测试被用作激活序列中下一个事件的起点。实验结果表明,我们的方法可用于生成定向测试,以覆盖 RTL 模型中的复杂角情况,而最先进的方法却无法激活这些角情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Design Automation of Electronic Systems
ACM Transactions on Design Automation of Electronic Systems 工程技术-计算机:软件工程
CiteScore
3.20
自引率
7.10%
发文量
105
审稿时长
3 months
期刊介绍: TODAES is a premier ACM journal in design and automation of electronic systems. It publishes innovative work documenting significant research and development advances on the specification, design, analysis, simulation, testing, and evaluation of electronic systems, emphasizing a computer science/engineering orientation. Both theoretical analysis and practical solutions are welcome.
期刊最新文献
Efficient Attacks on Strong PUFs via Covariance and Boolean Modeling PriorMSM: An Efficient Acceleration Architecture for Multi-Scalar Multiplication Multi-Stream Scheduling of Inference Pipelines on Edge Devices - a DRL Approach A Power Optimization Approach for Large-scale RM-TB Dual Logic Circuits Based on an Adaptive Multi-Task Intelligent Algorithm MAB-BMC: A Formal Verification Enhancer by Harnessing Multiple BMC Engines Together
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1