{"title":"Incremental Concolic Testing of Register-Transfer Level Designs","authors":"Hasini Witharana, Aruna Jayasena, Prabhat Mishra","doi":"10.1145/3655621","DOIUrl":null,"url":null,"abstract":"Concolic testing is a scalable solution for automated generation of directed tests for validation of hardware designs. Unfortunately, concolic testing fails to cover complex corner cases such as hard-to-activate branches. In this paper, we propose an incremental concolic testing technique to cover hard-to-activate branches in register-transfer level (RTL) models. We show that a complex branch condition can be viewed as a sequence of easy-to-activate events. We map the branch coverage problem to the coverage of a sequence of events. We propose an efficient algorithm to cover the sequence of events using concolic testing. Specifically, the test generated to activate the current event is used as the starting point to activate the next event in the sequence. Experimental results demonstrate that our approach can be used to generate directed tests to cover complex corner cases in RTL models while state-of-the-art methods fail to activate them.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"32 9","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3655621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Concolic testing is a scalable solution for automated generation of directed tests for validation of hardware designs. Unfortunately, concolic testing fails to cover complex corner cases such as hard-to-activate branches. In this paper, we propose an incremental concolic testing technique to cover hard-to-activate branches in register-transfer level (RTL) models. We show that a complex branch condition can be viewed as a sequence of easy-to-activate events. We map the branch coverage problem to the coverage of a sequence of events. We propose an efficient algorithm to cover the sequence of events using concolic testing. Specifically, the test generated to activate the current event is used as the starting point to activate the next event in the sequence. Experimental results demonstrate that our approach can be used to generate directed tests to cover complex corner cases in RTL models while state-of-the-art methods fail to activate them.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.