Incremental Concolic Testing of Register-Transfer Level Designs

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-03-30 DOI:10.1145/3655621
Hasini Witharana, Aruna Jayasena, Prabhat Mishra
{"title":"Incremental Concolic Testing of Register-Transfer Level Designs","authors":"Hasini Witharana, Aruna Jayasena, Prabhat Mishra","doi":"10.1145/3655621","DOIUrl":null,"url":null,"abstract":"Concolic testing is a scalable solution for automated generation of directed tests for validation of hardware designs. Unfortunately, concolic testing fails to cover complex corner cases such as hard-to-activate branches. In this paper, we propose an incremental concolic testing technique to cover hard-to-activate branches in register-transfer level (RTL) models. We show that a complex branch condition can be viewed as a sequence of easy-to-activate events. We map the branch coverage problem to the coverage of a sequence of events. We propose an efficient algorithm to cover the sequence of events using concolic testing. Specifically, the test generated to activate the current event is used as the starting point to activate the next event in the sequence. Experimental results demonstrate that our approach can be used to generate directed tests to cover complex corner cases in RTL models while state-of-the-art methods fail to activate them.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"32 9","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3655621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Concolic testing is a scalable solution for automated generation of directed tests for validation of hardware designs. Unfortunately, concolic testing fails to cover complex corner cases such as hard-to-activate branches. In this paper, we propose an incremental concolic testing technique to cover hard-to-activate branches in register-transfer level (RTL) models. We show that a complex branch condition can be viewed as a sequence of easy-to-activate events. We map the branch coverage problem to the coverage of a sequence of events. We propose an efficient algorithm to cover the sequence of events using concolic testing. Specifically, the test generated to activate the current event is used as the starting point to activate the next event in the sequence. Experimental results demonstrate that our approach can be used to generate directed tests to cover complex corner cases in RTL models while state-of-the-art methods fail to activate them.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
寄存器传输级设计的增量协整测试
协程测试是一种可扩展的解决方案,用于自动生成定向测试,以验证硬件设计。遗憾的是,协程测试无法覆盖复杂的角情况,如难以激活的分支。在本文中,我们提出了一种增量协程测试技术,以覆盖寄存器传输层(RTL)模型中难以激活的分支。我们表明,复杂的分支条件可被视为一系列易于激活的事件。我们将分支覆盖问题映射为事件序列的覆盖问题。我们提出了一种使用协程测试来覆盖事件序列的高效算法。具体来说,为激活当前事件而生成的测试被用作激活序列中下一个事件的起点。实验结果表明,我们的方法可用于生成定向测试,以覆盖 RTL 模型中的复杂角情况,而最先进的方法却无法激活这些角情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
Tumor Microenvironment Stimuli-Responsive Polypeptide Manganese-Calcium Nanomodulator Orchestrating Chemodynamic Therapy and Alleviating Hypoxia in Tumors. 3D-Printed Bone Spacers with Dual-Phase Structure: A Comparison of Biogenic and Commercial Hydroxyapatite for Potential Treatment of Bone Defects. Dual Antibacterial and Anticancer Functionality of Self-Assembled Dipeptide-Capped Silver Nanoparticles: Molecular Insights into Protein-Nanoparticle Interactions. Simultaneous Cross-Linking and Nanoparticle Anchoring by Dialdehyde Cellulose in Injectable Composite Chitosan/Polypyrrole Hydrogels. Biocompatibility of Additively Manufactured Fe-AZ31 Biodegradable Composites for Craniofacial Implant Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1