Nayra Ochoa-Viñals, D. Alonso-Estrada, S. Pacios‐Michelena, A. García-Cruz, Rodolfo Ramos-González, Evelyn Faife-Pérez, L. G. Michelena-Álvarez, J. Martínez-Hernández, Anna Iliná
{"title":"Current Advances in Carotenoid Production by Rhodotorula sp.","authors":"Nayra Ochoa-Viñals, D. Alonso-Estrada, S. Pacios‐Michelena, A. García-Cruz, Rodolfo Ramos-González, Evelyn Faife-Pérez, L. G. Michelena-Álvarez, J. Martínez-Hernández, Anna Iliná","doi":"10.3390/fermentation10040190","DOIUrl":null,"url":null,"abstract":"Microbial carotenoids are pigments of lipophilic nature; they are considered promising substitutes for chemically synthesized carotenoids in the food industry. Their benefits for human health have been demonstrated due to their antioxidant capacity. Yeasts of the genus Rhodotorula have genotypic characteristics that allow them to accumulate high concentrations of carotenes under certain stress conditions. The present review includes recent information covering different aspects of carotenoid production in Rhodotorula sp. fermentation. This review focuses on fermentation carotenoid production strategies, describing various economic raw materials as sources of carbon and nitrogen, the capacity for tolerance to heavy metals, and the effect of light, pH, and salts on the accumulation of carotenoids. Genetic modification strategies used to obtain strains with increased carotenoid production are described. Furthermore, using magnetic nanoparticles in the fermentation system, which could be a stress factor that increases pigment production, is considered for the first time. Rhodotorula is a potential source of high-value carotenoids with applications in the cosmetics, pharmaceutical, and food industries.","PeriodicalId":12379,"journal":{"name":"Fermentation","volume":"59 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fermentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fermentation10040190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial carotenoids are pigments of lipophilic nature; they are considered promising substitutes for chemically synthesized carotenoids in the food industry. Their benefits for human health have been demonstrated due to their antioxidant capacity. Yeasts of the genus Rhodotorula have genotypic characteristics that allow them to accumulate high concentrations of carotenes under certain stress conditions. The present review includes recent information covering different aspects of carotenoid production in Rhodotorula sp. fermentation. This review focuses on fermentation carotenoid production strategies, describing various economic raw materials as sources of carbon and nitrogen, the capacity for tolerance to heavy metals, and the effect of light, pH, and salts on the accumulation of carotenoids. Genetic modification strategies used to obtain strains with increased carotenoid production are described. Furthermore, using magnetic nanoparticles in the fermentation system, which could be a stress factor that increases pigment production, is considered for the first time. Rhodotorula is a potential source of high-value carotenoids with applications in the cosmetics, pharmaceutical, and food industries.