Designing a Reverse Logistics Network for End-of-Life Vehicles in an Uncertain Environment

IF 2.6 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC World Electric Vehicle Journal Pub Date : 2024-03-29 DOI:10.3390/wevj15040140
Meiling He, Qipeng Li, Tianhe Lin, Jiangyang Fan, Xiaohui Wu, Xun Han
{"title":"Designing a Reverse Logistics Network for End-of-Life Vehicles in an Uncertain Environment","authors":"Meiling He, Qipeng Li, Tianhe Lin, Jiangyang Fan, Xiaohui Wu, Xun Han","doi":"10.3390/wevj15040140","DOIUrl":null,"url":null,"abstract":"The strategic development of reverse logistics networks is crucial for addressing the common challenge of low recovery rates for end-of-life vehicles (ELVs) in China. To minimize the total cost of the reverse logistics network for ELVs, this paper proposes a mixed-integer linear programming (MILP) model. The model considers the recycling volume of different vehicle types, facility processing capacity, and the proportions of parts and materials. Building on this foundation, a fuzzy mixed-integer nonlinear programming (FMINLP) model is developed to account for the inherent uncertainty associated with recycling volumes and facility processing capacities. The model was solved using Lingo, and its effectiveness was validated using Jiangsu Province of China as a case study, followed by a sensitivity analysis. The results indicate that dismantling and machining centers incur the highest processing costs. Variations in recycling volume and facility handling capacity significantly impact total costs and site selection, with the former having a more pronounced effect. Increasing facility processing capacity effectively increases the recovery rate. Moreover, a higher confidence level corresponds to higher total costs and a greater demand for facilities.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Electric Vehicle Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/wevj15040140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The strategic development of reverse logistics networks is crucial for addressing the common challenge of low recovery rates for end-of-life vehicles (ELVs) in China. To minimize the total cost of the reverse logistics network for ELVs, this paper proposes a mixed-integer linear programming (MILP) model. The model considers the recycling volume of different vehicle types, facility processing capacity, and the proportions of parts and materials. Building on this foundation, a fuzzy mixed-integer nonlinear programming (FMINLP) model is developed to account for the inherent uncertainty associated with recycling volumes and facility processing capacities. The model was solved using Lingo, and its effectiveness was validated using Jiangsu Province of China as a case study, followed by a sensitivity analysis. The results indicate that dismantling and machining centers incur the highest processing costs. Variations in recycling volume and facility handling capacity significantly impact total costs and site selection, with the former having a more pronounced effect. Increasing facility processing capacity effectively increases the recovery rate. Moreover, a higher confidence level corresponds to higher total costs and a greater demand for facilities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在不确定环境中为报废汽车设计逆向物流网络
逆向物流网络的战略发展对于解决中国报废汽车(ELV)回收率低这一共同挑战至关重要。为了使报废汽车逆向物流网络的总成本最小化,本文提出了一个混合整数线性规划(MILP)模型。该模型考虑了不同类型车辆的回收量、设施处理能力以及零部件和材料的比例。在此基础上,开发了一个模糊混合整数非线性编程(FMINLP)模型,以考虑与回收量和设施处理能力相关的内在不确定性。该模型使用 Lingo 进行求解,并以中国江苏省为案例对其有效性进行了验证,随后进行了敏感性分析。结果表明,拆解和加工中心的处理成本最高。回收量和设施处理能力的变化对总成本和选址有显著影响,前者的影响更为明显。提高设施处理能力可有效提高回收率。此外,置信度越高,总成本越高,对设施的需求也越大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
World Electric Vehicle Journal
World Electric Vehicle Journal Engineering-Automotive Engineering
CiteScore
4.50
自引率
8.70%
发文量
196
审稿时长
8 weeks
期刊最新文献
Vibration Performance Analysis of a Yokeless Stator Axial Flux PM Motor with Distributed Winding for Electric Vehicle Application Investment Decision-Making to Select Converted Electric Motorcycle Tests in Indonesia Research on the Driving Behavior and Decision-Making of Autonomous Vehicles (AVs) in Mixed Traffic Flow by Integrating Bilayer-GRU-Att and GWO-XGBoost Models A Comprehensive Analysis of Supercapacitors and Their Equivalent Circuits—A Review Anti-Rollover Trajectory Planning Method for Heavy Vehicles in Human–Machine Cooperative Driving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1