A. Makridis, N. Maniotis, Dimitrios Papadopoulos, Pavlos Kyriazopoulos, M. Angelakeris
{"title":"A Novel Two-Stage 3D-Printed Halbach Array-Based Device for Magneto-Mechanical Applications","authors":"A. Makridis, N. Maniotis, Dimitrios Papadopoulos, Pavlos Kyriazopoulos, M. Angelakeris","doi":"10.3390/magnetochemistry10040021","DOIUrl":null,"url":null,"abstract":"This research unveils a versatile Halbach array magnetic device with promising biomedical applications, offering innovative solutions for targeted therapy and disease management in evolving biomedical engineering. This paper explores the potential of a novel Halbach array-based device for harnessing magneto-mechanical phenomena in biomedical applications. The study employs computational modeling using COMSOL Multiphysics to define the device’s magnetic properties and validate its operation within the theoretical prediction. The research catalogs the device’s operational modes and assesses crucial parameters related to magneto-mechanical biomedical modalities, including magnetic field strength, gradient, and force. Experimental validation of numerical findings through magnetic field measurements confirms the device’s multifaceted potential, particularly in targeted drug delivery and tissue engineering applications. Finally, the adaptability of the magnetic arrangements for various scenarios is also highlighted. This investigation provides valuable insights into integrating magneto-mechanical principles into biomedical engineering. It paves the way for further research and innovative approaches in theranostics, positioning the presented apparatus as a promising tool with untapped potential for future exploration and discovery in the evolving biomedical field.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"53 4","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/magnetochemistry10040021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This research unveils a versatile Halbach array magnetic device with promising biomedical applications, offering innovative solutions for targeted therapy and disease management in evolving biomedical engineering. This paper explores the potential of a novel Halbach array-based device for harnessing magneto-mechanical phenomena in biomedical applications. The study employs computational modeling using COMSOL Multiphysics to define the device’s magnetic properties and validate its operation within the theoretical prediction. The research catalogs the device’s operational modes and assesses crucial parameters related to magneto-mechanical biomedical modalities, including magnetic field strength, gradient, and force. Experimental validation of numerical findings through magnetic field measurements confirms the device’s multifaceted potential, particularly in targeted drug delivery and tissue engineering applications. Finally, the adaptability of the magnetic arrangements for various scenarios is also highlighted. This investigation provides valuable insights into integrating magneto-mechanical principles into biomedical engineering. It paves the way for further research and innovative approaches in theranostics, positioning the presented apparatus as a promising tool with untapped potential for future exploration and discovery in the evolving biomedical field.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.