Durability and performance of wood flour/polyethylene composites containing fire retardants after weathering via ASTM D2565

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-03-29 DOI:10.1177/07349041241237536
M. Dietenberger, Nicole M. Stark, Charles R. Boardman
{"title":"Durability and performance of wood flour/polyethylene composites containing fire retardants after weathering via ASTM D2565","authors":"M. Dietenberger, Nicole M. Stark, Charles R. Boardman","doi":"10.1177/07349041241237536","DOIUrl":null,"url":null,"abstract":"Wood–plastic composites are composite materials consisting of wood particles, thermoplastic polymer, and small amounts of other performance additives to increase performance in exterior construction applications such as decking and siding. Three best-performing fire retardants, determined from a previous study, which were brominated, magnesium hydroxide, and ammonium polyphosphate, were selected for this weathering study and more detailed analysis with color analysis, thermogravimetric analysis/differential scanning calorimetry, and the cone calorimeter. With the rapid surface heating condition at cone calorimeter irradiance of 50 kW m−2, modest surface leaching of fire retardant was detected as caused by weathering via increased first peak heat-release rate and reduced time to ignition values. Otherwise, the weathering had minimal effect on the remaining heat-release rate profile, and results confirmed ammonium polyphosphate as top performing fire retardant, even better than Ipe wood, with magnesium hydroxide and brominated slightly worse than Ipe. This suggests that 35% high-density polyethylene content reduced fire retardant bulk leaching.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/07349041241237536","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Wood–plastic composites are composite materials consisting of wood particles, thermoplastic polymer, and small amounts of other performance additives to increase performance in exterior construction applications such as decking and siding. Three best-performing fire retardants, determined from a previous study, which were brominated, magnesium hydroxide, and ammonium polyphosphate, were selected for this weathering study and more detailed analysis with color analysis, thermogravimetric analysis/differential scanning calorimetry, and the cone calorimeter. With the rapid surface heating condition at cone calorimeter irradiance of 50 kW m−2, modest surface leaching of fire retardant was detected as caused by weathering via increased first peak heat-release rate and reduced time to ignition values. Otherwise, the weathering had minimal effect on the remaining heat-release rate profile, and results confirmed ammonium polyphosphate as top performing fire retardant, even better than Ipe wood, with magnesium hydroxide and brominated slightly worse than Ipe. This suggests that 35% high-density polyethylene content reduced fire retardant bulk leaching.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含有阻燃剂的木粉/聚乙烯复合材料经 ASTM D2565 老化后的耐久性和性能
木塑复合材料是由木质颗粒、热塑性聚合物和少量其他高性能添加剂组成的复合材料,可提高露台和护墙板等外部建筑应用的性能。本次风化研究选择了之前研究中确定的三种性能最好的阻燃剂(溴化物、氢氧化镁和聚磷酸铵),并通过颜色分析、热重分析/差示扫描量热仪和锥形量热仪进行了更详细的分析。在锥形量热仪辐照度为 50 kW m-2 的快速表面加热条件下,通过增加第一峰值热释放率和减少点火时间值,检测到风化导致的阻燃剂的适度表面沥滤。除此之外,风化对剩余热释放率曲线的影响微乎其微,结果证实聚磷酸铵是性能最好的阻燃剂,甚至优于柚木,氢氧化镁和溴化柚木稍差。这表明,35% 的高密度聚乙烯含量减少了阻燃剂的大量沥滤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Intentions to move abroad among medical students: a cross-sectional study to investigate determinants and opinions. Analysis of Medical Rehabilitation Needs of 2023 Kahramanmaraş Earthquake Victims: Adıyaman Example. Efficacy of whole body vibration on fascicle length and joint angle in children with hemiplegic cerebral palsy. The change process questionnaire (CPQ): A psychometric validation. Prevalence and predictors of hand hygiene compliance in clinical, surgical and intensive care unit wards: results of a second cross-sectional study at the Umberto I teaching hospital of Rome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1