{"title":"Polarization-resolved surface-enhanced infrared spectra with nanosensors based on self-organized gold nanorods","authors":"Raffaella Polito","doi":"10.1051/jeos/2024015","DOIUrl":null,"url":null,"abstract":"Biosensors are becoming ubiquitous in the study of biomolecules, as, by modifying shape size and environment of metallic nanostructures it is now possible to engineer the field so to monitor subtle transient changes in molecular conformation at the level of a single biolayer. In this paper we present a first step towards a polarization-resolved study of light-induced conformational changes of transmembrane proteins. We exploit a platform of self-organized gold nanorods on SiO2 substrates to enhance the infrared reflection absorption spectroscopy and to perform difference spectroscopy on a light-sensitive transmembrane protein with simultaneous visible light illumination from the backside of the chip. The broad size distribution of nanorods allows us to probe with high sensitivity the modifications of the vibrational peaks over the entire fingerprint region. We show that it is possible to identify dissimilarities in the difference spectra, which in turn implies that we are monitoring over a broadband spectrum not only the chemical bonds with the dipole moment aligned orthogonally to our substrate/nanorod surface but also those with different orientation.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"35 26","pages":""},"PeriodicalIF":17.7000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1051/jeos/2024015","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Biosensors are becoming ubiquitous in the study of biomolecules, as, by modifying shape size and environment of metallic nanostructures it is now possible to engineer the field so to monitor subtle transient changes in molecular conformation at the level of a single biolayer. In this paper we present a first step towards a polarization-resolved study of light-induced conformational changes of transmembrane proteins. We exploit a platform of self-organized gold nanorods on SiO2 substrates to enhance the infrared reflection absorption spectroscopy and to perform difference spectroscopy on a light-sensitive transmembrane protein with simultaneous visible light illumination from the backside of the chip. The broad size distribution of nanorods allows us to probe with high sensitivity the modifications of the vibrational peaks over the entire fingerprint region. We show that it is possible to identify dissimilarities in the difference spectra, which in turn implies that we are monitoring over a broadband spectrum not only the chemical bonds with the dipole moment aligned orthogonally to our substrate/nanorod surface but also those with different orientation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.