Model Robust Optimal Designs for Kronecker Model for Mixture Experiments

M. K. Panda
{"title":"Model Robust Optimal Designs for Kronecker Model for Mixture Experiments","authors":"M. K. Panda","doi":"10.3329/ijss.v24i1.72016","DOIUrl":null,"url":null,"abstract":"In comparison to Scheffè’s canonical polynomial models (S-models), the Kronecker models (K-models) for mixture experiments are symmetric, compact in notation, and based on the Kronecker algebra of vectors and matrices. Further, there is a corresponding transition from S-models to K-models in the form of model re-parameterization. In the literature, it has been recommended to use second-degree K-models in practice compared to the widely used second-degree S-models especially when the moment matrix is of an ill-conditioning type. The motivation of the present article is to discriminate between K-models and S-models in terms of the model-robust D- and A-optimality criteria. These optimality criteria are discussed when there is uncertainty in selecting an appropriate model out of two rival models for a mixture experiment.\nInternational Journal of Statistical Sciences, Vol.24(1), March, 2024, pp 31-48","PeriodicalId":512956,"journal":{"name":"International Journal of Statistical Sciences","volume":"92 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Statistical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/ijss.v24i1.72016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In comparison to Scheffè’s canonical polynomial models (S-models), the Kronecker models (K-models) for mixture experiments are symmetric, compact in notation, and based on the Kronecker algebra of vectors and matrices. Further, there is a corresponding transition from S-models to K-models in the form of model re-parameterization. In the literature, it has been recommended to use second-degree K-models in practice compared to the widely used second-degree S-models especially when the moment matrix is of an ill-conditioning type. The motivation of the present article is to discriminate between K-models and S-models in terms of the model-robust D- and A-optimality criteria. These optimality criteria are discussed when there is uncertainty in selecting an appropriate model out of two rival models for a mixture experiment. International Journal of Statistical Sciences, Vol.24(1), March, 2024, pp 31-48
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合物实验 Kronecker 模型的模型稳健优化设计
与舍费尔的典型多项式模型(S-模型)相比,用于混合实验的克罗内克模型(K-模型)是对称的、符号紧凑的,并且基于向量和矩阵的克罗内克代数。此外,从 S-模型到 K-模型还有一个相应的过渡过程,即模型参数化。与广泛使用的二度 S 模型相比,文献建议在实践中使用二度 K 模型,尤其是当矩阵属于非条件类型时。本文的动机是根据模型稳健的 D- 和 A- 最佳准则来区分 K- 模型和 S- 模型。当从混合实验的两个对立模型中选择一个合适的模型存在不确定性时,将对这些最优性标准进行讨论。 国际统计科学杂志》,第 24(1)卷,2024 年 3 月,第 31-48 页
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimum Designs for Optimum Mixtures: An Informative Review Crafting Disaster-Driven Statistics: A Strategic Sampling Model Some Questions Related to Rao-Blackwellization and Association Rule Mining New Series of D-efficient Covariate Designs under BIBD set-up Understanding Chao (Biometrika, 1982) [Paper on ΠPS Sampling Schemes]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1