Energetics of a pulsed quantum battery

Charles Andrew Downing, M. S. Ukhtary
{"title":"Energetics of a pulsed quantum battery","authors":"Charles Andrew Downing, M. S. Ukhtary","doi":"10.1209/0295-5075/ad2e79","DOIUrl":null,"url":null,"abstract":"\n The challenge of storing energy efficiently and sustainably is highly prominent within modern scientific investigations. Due to the ongoing trend of miniaturization, the design of expressly quantum storage devices is itself a crucial task within current quantum technological research. Here we provide a transparent analytic model of a two-component quantum battery, composed of a charger and an energy holder, which is driven by a short laser pulse. We provide simple expressions for the energy stored in the battery, the maximum amount of work which can be extracted, both the instantaneous and the average powers, and the relevant charging times. This allows us to discuss explicitly the optimal design of the battery in terms of the driving strength of the pulse, the coupling between the charger and the holder, and the inevitable energy loss into the environment. We anticipate that our theory can act as a helpful guide for the nascent experimental work building and characterizing the first generation of truly quantum batteries.","PeriodicalId":503117,"journal":{"name":"Europhysics Letters","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Europhysics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1209/0295-5075/ad2e79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The challenge of storing energy efficiently and sustainably is highly prominent within modern scientific investigations. Due to the ongoing trend of miniaturization, the design of expressly quantum storage devices is itself a crucial task within current quantum technological research. Here we provide a transparent analytic model of a two-component quantum battery, composed of a charger and an energy holder, which is driven by a short laser pulse. We provide simple expressions for the energy stored in the battery, the maximum amount of work which can be extracted, both the instantaneous and the average powers, and the relevant charging times. This allows us to discuss explicitly the optimal design of the battery in terms of the driving strength of the pulse, the coupling between the charger and the holder, and the inevitable energy loss into the environment. We anticipate that our theory can act as a helpful guide for the nascent experimental work building and characterizing the first generation of truly quantum batteries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脉冲量子电池的能量学
在现代科学研究中,高效、可持续地储存能量是一个非常突出的挑战。由于微型化趋势的不断发展,设计简易的量子存储设备本身就是当前量子技术研究中的一项重要任务。在这里,我们提供了一个透明的双组分量子电池分析模型,它由充电器和能量储存器组成,由短激光脉冲驱动。我们提供了电池中存储的能量、可提取的最大功、瞬时功率和平均功率以及相关充电时间的简单表达式。这样,我们就可以根据脉冲的驱动强度、充电器和支架之间的耦合以及不可避免的环境能量损失,明确讨论电池的最佳设计。我们预计,我们的理论可以为建立和表征第一代真正量子电池的新生实验工作提供有益的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large self-heating by trapped-flux reduction in Sn-Pb solders Imperfect diffusion-controlled reactions for stochastic processes with memory Schrödinger evolution of a scalar field in Riemannian and pseudo Riemannian expanding metrics Evolution of the crack patterns in nanostructured films with subsequent wetting and drying cycles Narrowband stimulated Raman scattering and molecular modulation in anti-resonant hollow-core fibres
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1