{"title":"Overcoming data utilization challenges for built environment flood resilience: Strategies and best practices","authors":"Pavithra Rathnasiri, Onaopepo Adeniyi, Niraj Thurairajah","doi":"10.1111/jfr3.12986","DOIUrl":null,"url":null,"abstract":"<p>Built environment flood resilience is a critical challenge facing communities worldwide. Amongst various efforts to resilience, the conception towards data utilization becomes popular with enormous technological advancements. Built environment creates varieties of data at larger volumes throughout their life cycle signifying that the importance of these data in the context of flood resilience cannot be ignored. However, despite the power of data, the greatest opportunities that exist for flood resilience enhancement have been mired by numerous and complex unidentified challenges. Thus, identifying these challenges with timely relevant strategies is a significant need. One of the best ways to tackle these challenges is by viewing them through the lens of data life cycle stages. This study, therefore, aimed to identify these challenges in each stage of the data life cycle with strategies to overcome them. Semi-structured interviews conducted with 12 experts revealed the significant challenges allied with built environment data with potential future strategies. The qualitative content analysis was conducted to analyse the findings. The use of advanced sensing technologies, cloud-based storage solutions, data governance policies and the development of predictive models are some of the consequential strategies outlined in this study. These findings provide valuable insights and guidance to facilitate built environment data utilization for flood resilience.</p>","PeriodicalId":49294,"journal":{"name":"Journal of Flood Risk Management","volume":"17 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.12986","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flood Risk Management","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.12986","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Built environment flood resilience is a critical challenge facing communities worldwide. Amongst various efforts to resilience, the conception towards data utilization becomes popular with enormous technological advancements. Built environment creates varieties of data at larger volumes throughout their life cycle signifying that the importance of these data in the context of flood resilience cannot be ignored. However, despite the power of data, the greatest opportunities that exist for flood resilience enhancement have been mired by numerous and complex unidentified challenges. Thus, identifying these challenges with timely relevant strategies is a significant need. One of the best ways to tackle these challenges is by viewing them through the lens of data life cycle stages. This study, therefore, aimed to identify these challenges in each stage of the data life cycle with strategies to overcome them. Semi-structured interviews conducted with 12 experts revealed the significant challenges allied with built environment data with potential future strategies. The qualitative content analysis was conducted to analyse the findings. The use of advanced sensing technologies, cloud-based storage solutions, data governance policies and the development of predictive models are some of the consequential strategies outlined in this study. These findings provide valuable insights and guidance to facilitate built environment data utilization for flood resilience.
期刊介绍:
Journal of Flood Risk Management provides an international platform for knowledge sharing in all areas related to flood risk. Its explicit aim is to disseminate ideas across the range of disciplines where flood related research is carried out and it provides content ranging from leading edge academic papers to applied content with the practitioner in mind.
Readers and authors come from a wide background and include hydrologists, meteorologists, geographers, geomorphologists, conservationists, civil engineers, social scientists, policy makers, insurers and practitioners. They share an interest in managing the complex interactions between the many skills and disciplines that underpin the management of flood risk across the world.