Baomin Wang, Hewei Ding, Fei Teng, Zhirong Wang, Hongqin Liu
{"title":"Damage Object Detection of Steel Wire Rope-Core Conveyor Belts Based on the Improved YOLOv5","authors":"Baomin Wang, Hewei Ding, Fei Teng, Zhirong Wang, Hongqin Liu","doi":"10.1142/s0219467825500573","DOIUrl":null,"url":null,"abstract":"In response to the challenges in detecting damage features in X-ray images of steel wire rope-cores in conveyor belts, such as complex damage shapes, small sizes, low detection precision, and poor generalization ability, an improved YOLOv5 algorithm was proposed. The aim of the model is to accurately and efficiently identify and locate damage in the X-ray images of steel wire rope-cores in conveyor belts. First, the Adaptive Histogram Equalization (AHE) method is used to preprocess the images, reducing the interference of harsh mining environments and improving the quality of the dataset. Second, to better retain image details and enhance the detection ability of damage features, transpose convolutional upsampling is adopted, and the C3 module in the backbone network is replaced by C2f to ensure lightweight network models, meanwhile, it obtains richer gradient flow information and optimizing the loss function. Finally, the improved algorithm is compared with four classical detection algorithms using the damage feature dataset of steel wire rope-core conveyor belts. The experimental result shows that the proposed algorithm achieves an average detection precision of 91.8% and a detection speed of 40 frames per second (FPS) for images collected in harsh mining environments. The designed detection model provides a reference for the automatic recognition and detection of damage to steel wire rope-core conveyor belts.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467825500573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
In response to the challenges in detecting damage features in X-ray images of steel wire rope-cores in conveyor belts, such as complex damage shapes, small sizes, low detection precision, and poor generalization ability, an improved YOLOv5 algorithm was proposed. The aim of the model is to accurately and efficiently identify and locate damage in the X-ray images of steel wire rope-cores in conveyor belts. First, the Adaptive Histogram Equalization (AHE) method is used to preprocess the images, reducing the interference of harsh mining environments and improving the quality of the dataset. Second, to better retain image details and enhance the detection ability of damage features, transpose convolutional upsampling is adopted, and the C3 module in the backbone network is replaced by C2f to ensure lightweight network models, meanwhile, it obtains richer gradient flow information and optimizing the loss function. Finally, the improved algorithm is compared with four classical detection algorithms using the damage feature dataset of steel wire rope-core conveyor belts. The experimental result shows that the proposed algorithm achieves an average detection precision of 91.8% and a detection speed of 40 frames per second (FPS) for images collected in harsh mining environments. The designed detection model provides a reference for the automatic recognition and detection of damage to steel wire rope-core conveyor belts.