{"title":"Explicit integrators for nonlocal equations: The case of the Maxey-Riley-Gatignol equation","authors":"Divya Jaganathan, Rama Govindarajan, V. Vasan","doi":"10.1090/qam/1693","DOIUrl":null,"url":null,"abstract":"The Maxey-Riley-Gatignol (MRG) equation, which describes the dynamics of an inertial particle in nonuniform and unsteady flow, is an integro-differential equation with a memory term and its solution lacks a well-defined Taylor series at \n\n \n \n t\n =\n 0\n \n t=0\n \n\n. In particulate flows, one often seeks trajectories of millions of particles simultaneously, and the numerical solution to the MRG equation for each particle becomes prohibitively expensive due to its ever-rising memory costs. In this paper, we present an explicit numerical integrator for the MRG equation that inherits the benefits of standard time-integrators, namely a constant memory storage cost, a linear growth of operational effort with simulation time, and the ability to restart a simulation with the final state as the new initial condition. The integrator is based on a Markovian embedding of the MRG equation. The integrator and the embedding are consequences of a spectral representation of the solution to the linear MRG equation. We exploit these to extend the work of Cox and Matthews [J. Comput. Phys. 176 (2002), 430–455] and derive Runge-Kutta type iterative schemes of differing orders for the MRG equation. Our approach may be generalized to a large class of systems with memory effects.","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/qam/1693","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The Maxey-Riley-Gatignol (MRG) equation, which describes the dynamics of an inertial particle in nonuniform and unsteady flow, is an integro-differential equation with a memory term and its solution lacks a well-defined Taylor series at
t
=
0
t=0
. In particulate flows, one often seeks trajectories of millions of particles simultaneously, and the numerical solution to the MRG equation for each particle becomes prohibitively expensive due to its ever-rising memory costs. In this paper, we present an explicit numerical integrator for the MRG equation that inherits the benefits of standard time-integrators, namely a constant memory storage cost, a linear growth of operational effort with simulation time, and the ability to restart a simulation with the final state as the new initial condition. The integrator is based on a Markovian embedding of the MRG equation. The integrator and the embedding are consequences of a spectral representation of the solution to the linear MRG equation. We exploit these to extend the work of Cox and Matthews [J. Comput. Phys. 176 (2002), 430–455] and derive Runge-Kutta type iterative schemes of differing orders for the MRG equation. Our approach may be generalized to a large class of systems with memory effects.
期刊介绍:
The Quarterly of Applied Mathematics contains original papers in applied mathematics which have a close connection with applications. An author index appears in the last issue of each volume.
This journal, published quarterly by Brown University with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.