Using machine learning and 10‐K filings to measure innovation

Essi Nousiainen, Mikko Ranta, M. Ylinen, Marko Järvenpää
{"title":"Using machine learning and 10‐K filings to measure innovation","authors":"Essi Nousiainen, Mikko Ranta, M. Ylinen, Marko Järvenpää","doi":"10.1111/acfi.13245","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to develop and validate a text‐based measure of innovation using latent Dirichlet allocation on a sample of 45,409 10‐K filings from US listed companies. We expect that the text‐based innovation measure is associated with innovation and can be used to measure innovation for companies without patents or significant research and development expenditures. The empirical results are consistent with these assumptions, but reveal that thorough initial testing is required to ensure robustness. This study extends the research on innovation measurement and company disclosures, and provides a new method for assessing innovation using company disclosures.","PeriodicalId":335953,"journal":{"name":"Accounting & Finance","volume":" 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounting & Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/acfi.13245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this paper is to develop and validate a text‐based measure of innovation using latent Dirichlet allocation on a sample of 45,409 10‐K filings from US listed companies. We expect that the text‐based innovation measure is associated with innovation and can be used to measure innovation for companies without patents or significant research and development expenditures. The empirical results are consistent with these assumptions, but reveal that thorough initial testing is required to ensure robustness. This study extends the research on innovation measurement and company disclosures, and provides a new method for assessing innovation using company disclosures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习和 10-K 申报衡量创新
本文的目的是在美国上市公司 45,409 份 10-K 文件样本中,利用潜在 Dirichlet 分配法开发并验证一种基于文本的创新度量方法。我们希望基于文本的创新度量与创新相关联,并可用于度量没有专利或大量研发支出的公司的创新情况。实证结果与这些假设相符,但表明需要进行全面的初步测试以确保稳健性。本研究扩展了有关创新衡量和公司信息披露的研究,并提供了一种利用公司信息披露评估创新的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keju tradition and major litigation cases: The persistent impact of Confucian norm standard The effect of government‐guided funds on target industries in development zones – Evidence from China Philanthropic forms of corporate social responsibility practices in a multinational company: Colonial and post‐colonial perspectives Rent‐seeking or value‐creating? The impact of managerial autonomy from state‐built corporate pyramids on M&A performance Government procurement and zombie firms' productivity: Evidence from China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1