Effect of Oil Acoustic Properties on Film Thickness Measurement by Ultrasound Using Spring and Resonance Models

IF 3.1 3区 工程技术 Q2 ENGINEERING, MECHANICAL Lubricants Pub Date : 2024-03-25 DOI:10.3390/lubricants12040108
Alvaro S. Piovesan, Michele Schirru, Fabio Tatzgern, Jorge L. B. Medeiros, H. Costa
{"title":"Effect of Oil Acoustic Properties on Film Thickness Measurement by Ultrasound Using Spring and Resonance Models","authors":"Alvaro S. Piovesan, Michele Schirru, Fabio Tatzgern, Jorge L. B. Medeiros, H. Costa","doi":"10.3390/lubricants12040108","DOIUrl":null,"url":null,"abstract":"The principle of reflection of ultrasonic waves at lubricated interfaces has been widely studied in recent years using different models. In this work, two different models (the spring model and the resonance model) were used to verify the influence of the acoustic properties of four different lubricating oils. A simple three-layer configuration was used, where carefully prepared, well-controlled gaps between stainless steel plates were established to accommodate a drop of oil. Optical measurements showed that the gaps formed were: gap 1 = 11 µm, gap 2 = 85 µm, gap 3 = 100 µm, and gap 4 = 170 µm. The smaller gap (11 µm) was found to be in the limit measurement range using the spring model for the sensor used in this work (14 MHz), whereas the resonance method was used for the thicker gaps. For the resonance model, the use of the phase spectra helped the identification of the resonance frequencies. The results showed good agreement between the measured thicknesses and the nominal gap values. There was little effect of the acoustic properties of the oils on the measured values, with the largest discrepancies found for the oil with the highest speed of sound (PAO4). This new way to characterize oil properties in a thin gap, where the material and geometry of the contact are fully characterized, enables us to compare different measurement methods and understand their sensitivity when testing similar materials of the same class of lubricants, as small deviations are crucial in real-life applications.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants12040108","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The principle of reflection of ultrasonic waves at lubricated interfaces has been widely studied in recent years using different models. In this work, two different models (the spring model and the resonance model) were used to verify the influence of the acoustic properties of four different lubricating oils. A simple three-layer configuration was used, where carefully prepared, well-controlled gaps between stainless steel plates were established to accommodate a drop of oil. Optical measurements showed that the gaps formed were: gap 1 = 11 µm, gap 2 = 85 µm, gap 3 = 100 µm, and gap 4 = 170 µm. The smaller gap (11 µm) was found to be in the limit measurement range using the spring model for the sensor used in this work (14 MHz), whereas the resonance method was used for the thicker gaps. For the resonance model, the use of the phase spectra helped the identification of the resonance frequencies. The results showed good agreement between the measured thicknesses and the nominal gap values. There was little effect of the acoustic properties of the oils on the measured values, with the largest discrepancies found for the oil with the highest speed of sound (PAO4). This new way to characterize oil properties in a thin gap, where the material and geometry of the contact are fully characterized, enables us to compare different measurement methods and understand their sensitivity when testing similar materials of the same class of lubricants, as small deviations are crucial in real-life applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用弹簧和共振模型测量油的声学特性对超声波薄膜厚度测量的影响
近年来,人们利用不同的模型对超声波在润滑界面的反射原理进行了广泛研究。在这项工作中,使用了两种不同的模型(弹簧模型和共振模型)来验证四种不同润滑油声学特性的影响。我们使用了一个简单的三层结构,在不锈钢板之间建立了精心准备、控制良好的间隙,以容纳一滴油。光学测量显示,形成的间隙为:间隙 1 = 11 µm,间隙 2 = 85 µm,间隙 3 = 100 µm,间隙 4 = 170 µm。较小的间隙(11 微米)使用本研究中使用的传感器的弹簧模型(14 兆赫),在极限测量范围内,而较厚的间隙则使用共振方法。对于共振模型,相位频谱的使用有助于确定共振频率。结果表明,测量厚度与标称间隙值之间的一致性很好。油的声学特性对测量值的影响很小,声速最高的油(PAO4)的差异最大。这种表征薄间隙中润滑油特性的新方法能够充分表征接触点的材料和几何形状,使我们能够比较不同的测量方法,并了解它们在测试同类润滑油的类似材料时的灵敏度,因为在实际应用中,微小的偏差至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Lubricants
Lubricants Engineering-Mechanical Engineering
CiteScore
3.60
自引率
25.70%
发文量
293
审稿时长
11 weeks
期刊介绍: This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding
期刊最新文献
Theoretical and Experimental Study of Flexible Structure Tilting Pad Bearings Considering Deformation Comparative Study on the Lubrication of Ti3C2TX MXene and Graphene Oxide Nanofluids for Titanium Alloys Study of Lubrication Performance and Churning Loss under Mixed Lubrication Mode in Gearbox Investigation on the Static Performance of Surface-Throttling Frictionless Pneumatic Cylinder through Finite Element Method Numerical Simulations and Experimental Validation of Squeeze Film Dampers for Aircraft Jet Engines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1