Physics-informed Neural Networks for the Resolution of Analysis Problems in Electromagnetics

S. Barmada, P. D. Barba, A. Formisano, M. E. Mognaschi, M. Tucci
{"title":"Physics-informed Neural Networks for the Resolution of Analysis Problems in Electromagnetics","authors":"S. Barmada, P. D. Barba, A. Formisano, M. E. Mognaschi, M. Tucci","doi":"10.13052/2023.aces.j.381102","DOIUrl":null,"url":null,"abstract":"\n\n\nLearning from examples is the golden rule in the construction of behavioral models using neural networks (NN). When NN are trained to simulate physical equations, the tight enforcement of such laws is not guaranteed by the training process. In addition, there can be situations in which providing enough examples for a reliable training can be difficult, if not impossible. To alleviate these drawbacks of NN, recently a class of NN incorporating physical behavior has been proposed. Such NN are called “physics-informed neural networks” (PINN). In this contribution, their application to direct electromagnetic (EM) problems will be presented, and a formulation able to minimize an integral error will be introduced.\n\n\n","PeriodicalId":250668,"journal":{"name":"The Applied Computational Electromagnetics Society Journal (ACES)","volume":" 36","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Applied Computational Electromagnetics Society Journal (ACES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/2023.aces.j.381102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Learning from examples is the golden rule in the construction of behavioral models using neural networks (NN). When NN are trained to simulate physical equations, the tight enforcement of such laws is not guaranteed by the training process. In addition, there can be situations in which providing enough examples for a reliable training can be difficult, if not impossible. To alleviate these drawbacks of NN, recently a class of NN incorporating physical behavior has been proposed. Such NN are called “physics-informed neural networks” (PINN). In this contribution, their application to direct electromagnetic (EM) problems will be presented, and a formulation able to minimize an integral error will be introduced.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于解决电磁学分析问题的物理信息神经网络
从实例中学习是使用神经网络(NN)构建行为模型的黄金法则。当训练神经网络模拟物理方程时,训练过程并不能保证严格执行这些法则。此外,在某些情况下,为可靠的训练提供足够的示例即使不是不可能,也是很困难的。为了缓解 NN 的这些缺点,最近有人提出了一类包含物理行为的 NN。这类神经网络被称为 "物理信息神经网络"(PINN)。本文将介绍其在直接电磁(EM)问题中的应用,并将介绍一种能够最小化积分误差的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 3-D Global FDTD Courant-limit Model of the Earth for Long-time-span and High-altitude Applications Uncertainty Quantification and Optimal Design of EV-WPT System Efficiency based on Adaptive Gaussian Process Regression Single-mode Condition and Bending Loss Analysis of Ultrafast Laser-inscribed Mid-infrared Waveguides in GeAsSe Chalcogenide Glass Design of Wilkinson Power Dividers with SITL Compensated Microstrip Bandpass Filters Resonant Frequency Modelling of Microstrip Antennas by Consensus Network and Student’s-T Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1