{"title":"Predicting User Preference for Innovative Features in Intelligent Connected Vehicles from a Cultural Perspective","authors":"Jun Ma, Yuqi Gong, Wenxia Xu","doi":"10.3390/wevj15040130","DOIUrl":null,"url":null,"abstract":"The increasing level of intelligence in automobiles is driving a shift in the human–machine relationship. Users are paying more attention to the intelligent cabin and showing a tendency toward customization. As culture is considered to be an important factor in guiding user behavior and preference, this study innovatively incorporates cultural and human factors into the model to understand how individual cultural orientation influences user preference for innovative human-machine interaction (HMI) features. Firstly, this study considered five Hofstede cultural dimensions as potential impact factors and constructed a prediction model through the random forest algorithm so as to analyze the influence mechanism of culture. Subsequently, K-means clustering was used to classify the sample into three user groups and then predict their preferences for the innovative features in the intelligent cabin. The results showed that users with a higher power distance index preferred a sense of ceremony and show-off-related features such as ambient lighting and welcome mode, whereas users with high individualism were keen on a more open and personalized in-vehicle information system. Long-term orientation was found to be associated with features that help to improve efficiency, and users with a lower level of uncertainty avoidance and restraint were more likely to be attracted to new features and were also more willing to use entertainment-related features. The methodology developed in this study can be widely applied to people in different countries, thus effectively exploring the personal requirements of different individuals, guiding further user experience design and localization when breaking into a new market.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Electric Vehicle Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/wevj15040130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing level of intelligence in automobiles is driving a shift in the human–machine relationship. Users are paying more attention to the intelligent cabin and showing a tendency toward customization. As culture is considered to be an important factor in guiding user behavior and preference, this study innovatively incorporates cultural and human factors into the model to understand how individual cultural orientation influences user preference for innovative human-machine interaction (HMI) features. Firstly, this study considered five Hofstede cultural dimensions as potential impact factors and constructed a prediction model through the random forest algorithm so as to analyze the influence mechanism of culture. Subsequently, K-means clustering was used to classify the sample into three user groups and then predict their preferences for the innovative features in the intelligent cabin. The results showed that users with a higher power distance index preferred a sense of ceremony and show-off-related features such as ambient lighting and welcome mode, whereas users with high individualism were keen on a more open and personalized in-vehicle information system. Long-term orientation was found to be associated with features that help to improve efficiency, and users with a lower level of uncertainty avoidance and restraint were more likely to be attracted to new features and were also more willing to use entertainment-related features. The methodology developed in this study can be widely applied to people in different countries, thus effectively exploring the personal requirements of different individuals, guiding further user experience design and localization when breaking into a new market.