Valorization of Sugarcane Vinasse and Crude Glycerol for Single-Cell Oils Production by Rhodotorula glutinis R4: A Preliminary Approach to the Integration of Biofuels Industries for Sustainable Biodiesel Feedstock
D. D. Maza, Julio Maximiliano Barros, J. Guillamón, Manuel J. Aybar, S. C. Viñarta
{"title":"Valorization of Sugarcane Vinasse and Crude Glycerol for Single-Cell Oils Production by Rhodotorula glutinis R4: A Preliminary Approach to the Integration of Biofuels Industries for Sustainable Biodiesel Feedstock","authors":"D. D. Maza, Julio Maximiliano Barros, J. Guillamón, Manuel J. Aybar, S. C. Viñarta","doi":"10.3390/fermentation10040178","DOIUrl":null,"url":null,"abstract":"Single-cell oils (SCOs) offer a promising alternative to conventional biodiesel feedstocks. The main objective of this work was to obtain SCOs suitable for biodiesel production from the oleaginous yeast Rhodotorula glutinis R4 using sugarcane vinasse from a local sugar-derived alcohol industry as the substrate. Additionally, crude glycerol from the local biodiesel industry was evaluated as a low-cost carbon source to replace expensive glucose and as a strategy for integrating the bioethanol and biodiesel industries for the valorization of both agro-industrial wastes. R4 achieved a high lipid accumulation of 88% and 60% (w/w) in vinasse-based culture media, containing 10% and 25% vinasse with glucose (40 g L−1), respectively. When glucose was replaced with crude glycerol, R4 showed remarkable lipid accumulation (40%) and growth (12.58 g L−1). The fatty acids profile of SCOs showed a prevalence of oleic acid (C18:1), making them suitable for biodiesel synthesis. Biodiesel derived from R4 oils exhibits favorable characteristics, including a high cetane number (CN = 55) and high oxidative stability (OS = 13 h), meeting international biodiesel standards (ASTMD6751 and EN14214) and ensuring its compatibility with diesel engines. R. glutinis R4 produces SCOs from vinasse and crude glycerol, contributing to the circular economy for sustainable biodiesel production.","PeriodicalId":12379,"journal":{"name":"Fermentation","volume":" 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fermentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fermentation10040178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Single-cell oils (SCOs) offer a promising alternative to conventional biodiesel feedstocks. The main objective of this work was to obtain SCOs suitable for biodiesel production from the oleaginous yeast Rhodotorula glutinis R4 using sugarcane vinasse from a local sugar-derived alcohol industry as the substrate. Additionally, crude glycerol from the local biodiesel industry was evaluated as a low-cost carbon source to replace expensive glucose and as a strategy for integrating the bioethanol and biodiesel industries for the valorization of both agro-industrial wastes. R4 achieved a high lipid accumulation of 88% and 60% (w/w) in vinasse-based culture media, containing 10% and 25% vinasse with glucose (40 g L−1), respectively. When glucose was replaced with crude glycerol, R4 showed remarkable lipid accumulation (40%) and growth (12.58 g L−1). The fatty acids profile of SCOs showed a prevalence of oleic acid (C18:1), making them suitable for biodiesel synthesis. Biodiesel derived from R4 oils exhibits favorable characteristics, including a high cetane number (CN = 55) and high oxidative stability (OS = 13 h), meeting international biodiesel standards (ASTMD6751 and EN14214) and ensuring its compatibility with diesel engines. R. glutinis R4 produces SCOs from vinasse and crude glycerol, contributing to the circular economy for sustainable biodiesel production.