Compressive Strength and Elastic Modulus of a 3D Woven Glass/Polyester Fire-Retardant Sandwich Composite

IF 17.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-03-20 DOI:10.15282/ijame.21.1.2024.03.0849
R. Hidayanto, D. I. Taufiq, H. Judawisastra, R. Wirawan
{"title":"Compressive Strength and Elastic Modulus of a 3D Woven Glass/Polyester Fire-Retardant Sandwich Composite","authors":"R. Hidayanto, D. I. Taufiq, H. Judawisastra, R. Wirawan","doi":"10.15282/ijame.21.1.2024.03.0849","DOIUrl":null,"url":null,"abstract":"A 3D woven sandwich composite structure has been widely used in various fields due to its advantages in terms of its strength-to-weight ratio. The adoption of lightweight materials in the railway industry for train carriages is aligned with United Nations Sustainable Development Goal 11, as this fosters the development of sustainable transportation by reducing carriage weight, enhancing fuel efficiency, minimizing component wear, and mitigating air pollution. This study explores the effect of the addition of aluminum trioxide (ATH) filler on the core structure, density, compressive strength, elastic modulus, and the number of added layers of 3D woven core fabric with 2D woven face sheets. Sandwich composites were produced with varying ATH loads of 30%, 40%, and 50%. We also varied the number of 3D woven core fabric layers in the composite sandwich (one, two, three, and four layers) and the 2D preform (one on the upper side, two on the upper side, and one on the upper + two on the lower sides) used as a face sheet thickener. The results showed that the addition of ATH filler increased the composite density. The addition of up to 40% ATH improved the strength and elastic modulus of the composite, while excessive loading led to a decrease in both properties. Variation of the 3D and 2D preform layers also improved the compressive strength and elastic modulus. We conclude that 3D woven sandwich composites incorporating 40% ATH, multilayered 3D woven core fabric, and 2D woven fabric face sheet thickener represent promising materials for use in the railway industry.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" 7","pages":""},"PeriodicalIF":17.7000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.21.1.2024.03.0849","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A 3D woven sandwich composite structure has been widely used in various fields due to its advantages in terms of its strength-to-weight ratio. The adoption of lightweight materials in the railway industry for train carriages is aligned with United Nations Sustainable Development Goal 11, as this fosters the development of sustainable transportation by reducing carriage weight, enhancing fuel efficiency, minimizing component wear, and mitigating air pollution. This study explores the effect of the addition of aluminum trioxide (ATH) filler on the core structure, density, compressive strength, elastic modulus, and the number of added layers of 3D woven core fabric with 2D woven face sheets. Sandwich composites were produced with varying ATH loads of 30%, 40%, and 50%. We also varied the number of 3D woven core fabric layers in the composite sandwich (one, two, three, and four layers) and the 2D preform (one on the upper side, two on the upper side, and one on the upper + two on the lower sides) used as a face sheet thickener. The results showed that the addition of ATH filler increased the composite density. The addition of up to 40% ATH improved the strength and elastic modulus of the composite, while excessive loading led to a decrease in both properties. Variation of the 3D and 2D preform layers also improved the compressive strength and elastic modulus. We conclude that 3D woven sandwich composites incorporating 40% ATH, multilayered 3D woven core fabric, and 2D woven fabric face sheet thickener represent promising materials for use in the railway industry.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维编织玻璃/聚酯防火夹层复合材料的压缩强度和弹性模量
三维编织三明治复合材料结构因其强度重量比方面的优势,已被广泛应用于各个领域。在铁路行业的列车车厢中采用轻质材料符合联合国可持续发展目标 11,因为这可以减轻车厢重量、提高燃油效率、减少部件磨损和减轻空气污染,从而促进可持续交通的发展。本研究探讨了添加三氧化二铝(ATH)填料对带有二维编织面片的三维编织芯材结构、密度、抗压强度、弹性模量以及添加层数的影响。三明治复合材料的 ATH 负荷分别为 30%、40% 和 50%。我们还改变了复合材料夹层中三维编织芯材的层数(一层、两层、三层和四层),以及作为面片增厚剂的二维预成型(上侧一层、上侧两层、上侧一层+下侧两层)。结果表明,添加 ATH 填料可提高复合材料的密度。添加多达 40% 的 ATH 可提高复合材料的强度和弹性模量,而过量添加则会导致这两项性能下降。三维和二维预成型层的变化也提高了抗压强度和弹性模量。我们的结论是,含有 40% ATH、多层三维编织芯材和二维编织面材增稠剂的三维编织夹层复合材料是铁路工业中很有前途的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Twisted Graphene Nanoribbons for Breakthroughs in Energy Storage, Bioelectronics and Chiroptics. Engineering Tick Evasins as Multitarget Chemokine Inhibitors─A Biomimetic Approach To Tackling the Complexity of the Immune System Biochemical Interface Engineering for Transistor-Based Point-of-Care Diagnostics Interface Energy Tuning in Lanthanide Upconversion Nanoparticles through a Multilayer Growth Strategy A Perspective on Ultrafast Excited-State Dynamics: From Molecular Aggregates to Conjugated Polymer Nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1