Research on slim-hole drilling technology for shale gas geological survey in China

Q1 Earth and Planetary Sciences Petroleum Research Pub Date : 2024-09-01 DOI:10.1016/j.ptlrs.2024.03.006
{"title":"Research on slim-hole drilling technology for shale gas geological survey in China","authors":"","doi":"10.1016/j.ptlrs.2024.03.006","DOIUrl":null,"url":null,"abstract":"<div><p>Over the last 10 years, the China Geological Survey has deployed 137 slim-hole shale gas geological exploration wells for coring entire wellbores. These wells are primarily located in new blocks and geological formations where neighboring well data are insufficient, beyond the scope of developed oil fields in China, or outside of oil and gas company mining-right areas. The drilling rig equipment, coring tools, and core drill bits of slim-hole shale gas drilling technology are different from those associated with traditional petroleum drilling. Many studies have been conducted on non-coring slim-hole drilling technology. This paper focuses on coring technology and drilling safety, summarizing a set of high-efficiency shale gas drilling equipment and technology systems based on geological drilling equipment and techniques (that can be used for solid mineral exploration). We report on: 1) an improved vertical shaft drilling rig adapted to shale gas well control safety; 2) high-efficiency core drilling techniques, focusing on coring tools, and techniques incorporating an inverted tower drilling tool combination, air circulation follow-through technology, and expanded casing technology; 3) research progress on high-efficiency core drill bits, including non-planar tooth polycrystalline diamond compact bits and impregnated diamond core bits, along with their application effects. This research provides substantial advances in drill-core technology and improvements in exploration efficiency. Moreover, it provides a reference frame for well structural design and selection of construction technology for shale gas exploration drilling projects.</p></div>","PeriodicalId":19756,"journal":{"name":"Petroleum Research","volume":"9 3","pages":"Pages 451-461"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096249524000322/pdfft?md5=644a46f277292c005d866fc0c42b587d&pid=1-s2.0-S2096249524000322-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Research","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096249524000322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Over the last 10 years, the China Geological Survey has deployed 137 slim-hole shale gas geological exploration wells for coring entire wellbores. These wells are primarily located in new blocks and geological formations where neighboring well data are insufficient, beyond the scope of developed oil fields in China, or outside of oil and gas company mining-right areas. The drilling rig equipment, coring tools, and core drill bits of slim-hole shale gas drilling technology are different from those associated with traditional petroleum drilling. Many studies have been conducted on non-coring slim-hole drilling technology. This paper focuses on coring technology and drilling safety, summarizing a set of high-efficiency shale gas drilling equipment and technology systems based on geological drilling equipment and techniques (that can be used for solid mineral exploration). We report on: 1) an improved vertical shaft drilling rig adapted to shale gas well control safety; 2) high-efficiency core drilling techniques, focusing on coring tools, and techniques incorporating an inverted tower drilling tool combination, air circulation follow-through technology, and expanded casing technology; 3) research progress on high-efficiency core drill bits, including non-planar tooth polycrystalline diamond compact bits and impregnated diamond core bits, along with their application effects. This research provides substantial advances in drill-core technology and improvements in exploration efficiency. Moreover, it provides a reference frame for well structural design and selection of construction technology for shale gas exploration drilling projects.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中国页岩气地质勘查细孔钻探技术研究
在过去 10 年中,中国地质调查局部署了 137 口细孔页岩气地质勘探井,对整个井筒进行取芯。这些井主要分布在邻井资料不足、中国已开发油田范围之外或油气公司开采权范围之外的新区块和地质构造中。细孔页岩气钻井技术的钻机设备、取芯工具和取芯钻头与传统石油钻井技术不同。许多研究都是针对非取芯细长孔钻井技术的。本文以取芯技术和钻探安全为重点,在地质钻探设备和技术(可用于固体矿产勘探)的基础上,总结出一套高效页岩气钻探设备和技术体系。我们报告了1)适应页岩气井控安全的改进型竖井钻机;2)高效岩心钻进技术,重点是取芯钻具,以及倒塔钻具组合技术、空气循环随钻技术和膨胀套管技术;3)高效岩心钻头的研究进展,包括非平面齿聚晶金刚石小型钻头和浸渍金刚石岩心钻头及其应用效果。这些研究极大地推动了岩心钻探技术的发展,提高了勘探效率。此外,它还为页岩气勘探钻井工程的井结构设计和施工技术选择提供了参考框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Petroleum Research
Petroleum Research Earth and Planetary Sciences-Geology
CiteScore
7.10
自引率
0.00%
发文量
90
审稿时长
35 weeks
期刊最新文献
Applicability of deep neural networks for lithofacies classification from conventional well logs: An integrated approach Investigation of a solid particle deposition velocity in drag reducing fluids with salinity Use of graphs to assess well safety in drilling projects and during operations by identification of available barrier elements and consolidation of barrier envelopes Sedimentary microfacies of Member 5 of Xujiahe Formation in the Dongfengchang area, Sichuan Basin Research on physical explosion crater model of high-pressure natural gas pipeline
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1