Bacterial nanocellulose assembly into super-strong and humidity-responsive macrofibers

IF 20.2 Q1 MATERIALS SCIENCE, PAPER & WOOD Journal of Bioresources and Bioproducts Pub Date : 2024-03-28 DOI:10.1016/j.jobab.2024.03.005
Yadong Zhao , Zheng Yang , Rusen Zhou , Bin Zheng , Meiling Chen , Fei Liu , Wenhua Miao , Renwu Zhou , Patrick Cullen , Zhenhai Xia , Liming Dai , Kostya (Ken) Ostrikov
{"title":"Bacterial nanocellulose assembly into super-strong and humidity-responsive macrofibers","authors":"Yadong Zhao ,&nbsp;Zheng Yang ,&nbsp;Rusen Zhou ,&nbsp;Bin Zheng ,&nbsp;Meiling Chen ,&nbsp;Fei Liu ,&nbsp;Wenhua Miao ,&nbsp;Renwu Zhou ,&nbsp;Patrick Cullen ,&nbsp;Zhenhai Xia ,&nbsp;Liming Dai ,&nbsp;Kostya (Ken) Ostrikov","doi":"10.1016/j.jobab.2024.03.005","DOIUrl":null,"url":null,"abstract":"<div><p>Cellulose macrofibers (MFs) are gaining increasing interest as natural and biodegradable alternatives to fossil-derived polymers for both structural and functional applications. However, simultaneously achieving their exceptional mechanical performance and desired functionality is challenging and requires complex processing. Here, we reported a one-step approach using a tension-assisted twisting (TAT) technique for MF fabrication from bacterial cellulose (BC). The TAT stretches and aligns BC nanofibers pre-arranged in hydrogel tubes to form MFs with compactly assembled structures and enhanced hydrogen bonding among neighboring nanofibers. The as-prepared BC MFs exhibited a very high tensile strength of 1 057 MPa and exceptional lifting capacity (over 340 000 when normalized by their own weight). Moreover, due to the volume expansion of BC nanofibers upon water exposure, BC MFs quickly harvested energy from environmental moisture to untwist the bundled networks, thus generating a torsional spinning with a peak rotation speed of 884 r/(min·m). The demonstrated rapid and intense actuation response makes the MFs ideal candidates for diverse humidity-response-based applications beyond advanced actuators, remote rain indicators, intelligent switches, and smart curtains.</p></div>","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":null,"pages":null},"PeriodicalIF":20.2000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2369969824000227/pdfft?md5=b53b89264de8a526743cdd6c76c33f5c&pid=1-s2.0-S2369969824000227-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioresources and Bioproducts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2369969824000227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

Abstract

Cellulose macrofibers (MFs) are gaining increasing interest as natural and biodegradable alternatives to fossil-derived polymers for both structural and functional applications. However, simultaneously achieving their exceptional mechanical performance and desired functionality is challenging and requires complex processing. Here, we reported a one-step approach using a tension-assisted twisting (TAT) technique for MF fabrication from bacterial cellulose (BC). The TAT stretches and aligns BC nanofibers pre-arranged in hydrogel tubes to form MFs with compactly assembled structures and enhanced hydrogen bonding among neighboring nanofibers. The as-prepared BC MFs exhibited a very high tensile strength of 1 057 MPa and exceptional lifting capacity (over 340 000 when normalized by their own weight). Moreover, due to the volume expansion of BC nanofibers upon water exposure, BC MFs quickly harvested energy from environmental moisture to untwist the bundled networks, thus generating a torsional spinning with a peak rotation speed of 884 r/(min·m). The demonstrated rapid and intense actuation response makes the MFs ideal candidates for diverse humidity-response-based applications beyond advanced actuators, remote rain indicators, intelligent switches, and smart curtains.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细菌纳米纤维素组装成超强耐湿大纤维
纤维素大纤维(MFs)作为化石衍生聚合物的天然可生物降解替代品,在结构和功能应用领域正受到越来越多的关注。然而,要同时实现纤维素大纤维的优异机械性能和所需功能是一项挑战,需要复杂的加工工艺。在此,我们报告了一种使用张力辅助扭转(TAT)技术一步法利用细菌纤维素(BC)制造 MF 的方法。TAT 拉伸和对齐预先在水凝胶管中排列的细菌纤维素纳米纤维,形成具有紧凑组装结构和增强相邻纳米纤维间氢键的 MF。制备的碱性纤维素中密度纤维具有 1 057 兆帕的超高拉伸强度和卓越的提升能力(按自重归一化后超过 340 000)。此外,由于 BC 纳米纤维遇水后体积膨胀,BC MFs 能迅速从环境湿度中获取能量,使捆绑的网络松开,从而产生扭转旋转,其峰值旋转速度为 884 r/(min-m)。所展示的快速而强烈的致动响应使这种微纤维结构成为基于湿度响应的各种应用的理想候选材料,这些应用包括高级致动器、远程雨量指示器、智能开关和智能窗帘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Bioresources and Bioproducts
Journal of Bioresources and Bioproducts Agricultural and Biological Sciences-Forestry
CiteScore
39.30
自引率
0.00%
发文量
38
审稿时长
12 weeks
期刊最新文献
Editorial Board Enhanced biomass densification pretreatment using binary chemicals for efficient lignocellulosic valorization Development of Methylene Bis-Benzotriazolyl Tetramethylbutylphenol-grafted lignin sub-microspheres loaded with TiO2 for sunscreen applications Cavitation as a zero-waste circular economy process to convert citrus processing waste into biopolymers in high demand Selective biomass conversion over novel designed tandem catalyst
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1