Feng Yue , Zhaoya Fan , Cong Li , Yang Meng , Shuo Zhang , Mengke Shi , Minghua Wang , Mario Berrettoni , Jun Li , Hongzhong Zhang
{"title":"Electro-assisted photocatalytic reduction of CO2 in ambient air using Ag/TNTAs at the gas-solid interface","authors":"Feng Yue , Zhaoya Fan , Cong Li , Yang Meng , Shuo Zhang , Mengke Shi , Minghua Wang , Mario Berrettoni , Jun Li , Hongzhong Zhang","doi":"10.1016/j.matre.2024.100269","DOIUrl":null,"url":null,"abstract":"<div><p>The direct conversion of atmospheric CO<sub>2</sub> into fuel via photocatalysis exhibits significant practical application value in advancing the carbon cycle. In this study, we established an electro-assisted photocatalytic system with dual compartments and interfaces, and coated Ag nanoparticles on the titanium nanotube arrays (TNTAs) by polydopamine modification. In the absence of sacrificial agent and alkali absorption liquid conditions, the stable, efficient and highly selective conversion of CO<sub>2</sub> to CO at the gas-solid interface in ambient air was realized by photoelectric synergy. Specifically, with the assistance of potential, the CO formation rates reached 194.9 μmol h<sup>−1</sup> m<sup>−2</sup> and 103.9 μmol h<sup>−1</sup> m<sup>−2</sup> under ultraviolet and visible light irradiation, respectively; the corresponding CO<sub>2</sub> conversion rates in ambient air were 30% and 16%, respectively. The excellent catalytic effect is mainly attributed to the formation of P–N heterojunction during the catalytic process and the surface plasmon resonance effect. Additionally, the introduction of solid agar electrolytes effectively inhibits the hydrogen evolution reaction and improves the electron utilization rate. This system promotes the development of photocatalytic technology for practical applications and provides new insights and support for the carbon cycle.</p></div>","PeriodicalId":61638,"journal":{"name":"材料导报:能源(英文)","volume":"4 2","pages":"Article 100269"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666935824000338/pdfft?md5=c7b91689ea8788c3ae8d74e0bd245704&pid=1-s2.0-S2666935824000338-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"材料导报:能源(英文)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666935824000338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The direct conversion of atmospheric CO2 into fuel via photocatalysis exhibits significant practical application value in advancing the carbon cycle. In this study, we established an electro-assisted photocatalytic system with dual compartments and interfaces, and coated Ag nanoparticles on the titanium nanotube arrays (TNTAs) by polydopamine modification. In the absence of sacrificial agent and alkali absorption liquid conditions, the stable, efficient and highly selective conversion of CO2 to CO at the gas-solid interface in ambient air was realized by photoelectric synergy. Specifically, with the assistance of potential, the CO formation rates reached 194.9 μmol h−1 m−2 and 103.9 μmol h−1 m−2 under ultraviolet and visible light irradiation, respectively; the corresponding CO2 conversion rates in ambient air were 30% and 16%, respectively. The excellent catalytic effect is mainly attributed to the formation of P–N heterojunction during the catalytic process and the surface plasmon resonance effect. Additionally, the introduction of solid agar electrolytes effectively inhibits the hydrogen evolution reaction and improves the electron utilization rate. This system promotes the development of photocatalytic technology for practical applications and provides new insights and support for the carbon cycle.