{"title":"Single position, prone oblique lateral interbody fusion (OLIF)—case illustration and technical considerations","authors":"TianYi Wu, Q. Yeo, J. Oh","doi":"10.21037/jss-23-95","DOIUrl":null,"url":null,"abstract":"Oblique lateral interbody fusion (OLIF) is a powerful method to treat various spinal conditions and is frequently combined with posterior instrumentation. This is traditionally performed in dual positions, with the patient first in lateral then turned prone. Single position lateral surgery (SPS-L) has been studied in a bid to improve surgical efficiency and reduce operative costs, but various limitations have been identified. More recently, the single position prone surgery (SPS-P) has been described as an alternative to address some of these limitations. This case illustrates a patient who underwent SPS-P using an OLIF corridor with subsequent posterior decompression and instrumentation. The benefits and limitations of this procedure compared to the conventional techniques are highlighted in this case. We present the case of a 75-year-old female presenting with thoracic myelopathy over T11/12 and concurrent L2–4 spinal stenosis. She underwent OLIF of L2/3 and L3/4, posterior decompression of T11/12 and L2/3, and posterior instrumented fusion from T10–L4 via a single prone position. We aim to describe the advantages of this approach and the challenges encountered through our experience. SPS-P offers numerous benefits compared to the already powerful SPS-L. In the upper levels of the lumbar spine, a pre-psoas approach may also be feasible. However, the prone lateral technique does not replace all patients suited for a lateral interbody fusion but should be seen as a viable option for selected cases such as those with previous fusion at the L5/S1 with adjacent degeneration requiring extension and posterior fixation.","PeriodicalId":509805,"journal":{"name":"Journal of Spine Surgery","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spine Surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21037/jss-23-95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Oblique lateral interbody fusion (OLIF) is a powerful method to treat various spinal conditions and is frequently combined with posterior instrumentation. This is traditionally performed in dual positions, with the patient first in lateral then turned prone. Single position lateral surgery (SPS-L) has been studied in a bid to improve surgical efficiency and reduce operative costs, but various limitations have been identified. More recently, the single position prone surgery (SPS-P) has been described as an alternative to address some of these limitations. This case illustrates a patient who underwent SPS-P using an OLIF corridor with subsequent posterior decompression and instrumentation. The benefits and limitations of this procedure compared to the conventional techniques are highlighted in this case. We present the case of a 75-year-old female presenting with thoracic myelopathy over T11/12 and concurrent L2–4 spinal stenosis. She underwent OLIF of L2/3 and L3/4, posterior decompression of T11/12 and L2/3, and posterior instrumented fusion from T10–L4 via a single prone position. We aim to describe the advantages of this approach and the challenges encountered through our experience. SPS-P offers numerous benefits compared to the already powerful SPS-L. In the upper levels of the lumbar spine, a pre-psoas approach may also be feasible. However, the prone lateral technique does not replace all patients suited for a lateral interbody fusion but should be seen as a viable option for selected cases such as those with previous fusion at the L5/S1 with adjacent degeneration requiring extension and posterior fixation.