Danny Hermelin , Yuval Itzhaki , Hendrik Molter , Dvir Shabtay
{"title":"On the parameterized complexity of interval scheduling with eligible machine sets","authors":"Danny Hermelin , Yuval Itzhaki , Hendrik Molter , Dvir Shabtay","doi":"10.1016/j.jcss.2024.103533","DOIUrl":null,"url":null,"abstract":"<div><p>We provide new parameterized complexity results for <span>Interval Scheduling on Eligible Machines</span>. In this problem, a set of <em>n</em> jobs is given to be processed non-preemptively on a set of <em>m</em> machines. Each job has a <em>processing time</em>, a <em>deadline</em>, a <em>weight</em>, and a set of <em>eligible machines</em> that can process it. The goal is to find a maximum weight subset of jobs that can each be processed on one of its eligible machines such that it completes exactly at its deadline. We focus on two parameters: The number <em>m</em> of machines, and the largest processing time <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>max</mi></mrow></msub></math></span>. Our main contribution is showing <span>W[1]</span>-hardness when parameterized by <em>m</em>. This answers Open Problem 8 of Mnich and van Bevern's list of 15 open problems in parameterized complexity of scheduling problems [Computers & Operations Research, 2018]. Furthermore, we show <span>NP</span>-hardness even when <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>max</mi></mrow></msub><mo>=</mo><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> and present an <span>FPT</span>-algorithm with for the combined parameter <span><math><mi>m</mi><mo>+</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>max</mi></mrow></msub></math></span>.</p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"144 ","pages":"Article 103533"},"PeriodicalIF":1.1000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002200002400028X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
We provide new parameterized complexity results for Interval Scheduling on Eligible Machines. In this problem, a set of n jobs is given to be processed non-preemptively on a set of m machines. Each job has a processing time, a deadline, a weight, and a set of eligible machines that can process it. The goal is to find a maximum weight subset of jobs that can each be processed on one of its eligible machines such that it completes exactly at its deadline. We focus on two parameters: The number m of machines, and the largest processing time . Our main contribution is showing W[1]-hardness when parameterized by m. This answers Open Problem 8 of Mnich and van Bevern's list of 15 open problems in parameterized complexity of scheduling problems [Computers & Operations Research, 2018]. Furthermore, we show NP-hardness even when and present an FPT-algorithm with for the combined parameter .
期刊介绍:
The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions.
Research areas include traditional subjects such as:
• Theory of algorithms and computability
• Formal languages
• Automata theory
Contemporary subjects such as:
• Complexity theory
• Algorithmic Complexity
• Parallel & distributed computing
• Computer networks
• Neural networks
• Computational learning theory
• Database theory & practice
• Computer modeling of complex systems
• Security and Privacy.