R. Palamutoğlu, Cemal Kasnak, Buket Özen Ünaldı, Sabire Duman, Ayşegül Türk Baydır
{"title":"Effect of Olive Oil Hydrogel as a Fat Replacer in Beef Meatballs","authors":"R. Palamutoğlu, Cemal Kasnak, Buket Özen Ünaldı, Sabire Duman, Ayşegül Türk Baydır","doi":"10.17113/ftb.62.01.24.8134","DOIUrl":null,"url":null,"abstract":"Research background. Meat and meat products are essential sources of dietary saturated fatty acids. However, excessive consumption of meat and meat products may be harmful to human health. The study evaluates the effect of fat replacement with hydrogels (olive oil in water emulsions gelled by gelatine) in meatballs.\nExperimental approach. The effect of replacing fat with different ratios of hydrogel (control, 25 (F25), 50 (F50), 75 (F75) and 100 % (F100)) on the chemical (fatty acids and thiobarbituric acid reactive substances (TBARS)) and physical (cooking loss, diameter reduction, fat retention, water retention, colour and texture analysis) characteristics of the meatballs were analyzed.\nResults and conclusions. The fat content of raw meatball samples was reduced from (31.2±2.2) to (10.5±0.4) % in the sample with the highest fat substitution (F100). The energy levels of the F100 samples were almost 56 % lower than of the control group. Monounsaturated fatty acids (MUFAs) represented the dominant group in all substitution rates of the meatballs, followed by saturated fatty acids (SFAs) and finally polyunsaturated fatty acids (PUFAs). Among the raw meatball samples, the highest oxidation occurred in the F50 and F100 groups. However, it was determined that the difference between F25 and F75 and the difference between control and F75 were not statistically significant (p>0.05). When the cooked samples were compared, the highest thiobarbituric acid (TBA) value was found in the F50 sample, followed by the F100 and F75 samples. The difference between the mean values of springiness and cohesiveness of the samples was not significant (p>0.05). The hardness value of samples decreased significantly (p<0.001) with >75 % fat replacement.\nNovelty and scientific contribution. It can be concluded that the oil replacement rate that may satisfy consumer demand without impairing the product technological and chemical quality should be <75 %. As the fat replacement ratio increases, the SFA content of cooked meatballs decreases, while the MUFA and PUFA contents increase. Considering the positive effects of reducing the intake of SFAs and increasing the intake of unsaturated fatty acids on non-communicable diseases such as cardiovascular diseases, fat replacement in meatballs is important for future developments.","PeriodicalId":12400,"journal":{"name":"Food Technology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Technology and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.17113/ftb.62.01.24.8134","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Research background. Meat and meat products are essential sources of dietary saturated fatty acids. However, excessive consumption of meat and meat products may be harmful to human health. The study evaluates the effect of fat replacement with hydrogels (olive oil in water emulsions gelled by gelatine) in meatballs.
Experimental approach. The effect of replacing fat with different ratios of hydrogel (control, 25 (F25), 50 (F50), 75 (F75) and 100 % (F100)) on the chemical (fatty acids and thiobarbituric acid reactive substances (TBARS)) and physical (cooking loss, diameter reduction, fat retention, water retention, colour and texture analysis) characteristics of the meatballs were analyzed.
Results and conclusions. The fat content of raw meatball samples was reduced from (31.2±2.2) to (10.5±0.4) % in the sample with the highest fat substitution (F100). The energy levels of the F100 samples were almost 56 % lower than of the control group. Monounsaturated fatty acids (MUFAs) represented the dominant group in all substitution rates of the meatballs, followed by saturated fatty acids (SFAs) and finally polyunsaturated fatty acids (PUFAs). Among the raw meatball samples, the highest oxidation occurred in the F50 and F100 groups. However, it was determined that the difference between F25 and F75 and the difference between control and F75 were not statistically significant (p>0.05). When the cooked samples were compared, the highest thiobarbituric acid (TBA) value was found in the F50 sample, followed by the F100 and F75 samples. The difference between the mean values of springiness and cohesiveness of the samples was not significant (p>0.05). The hardness value of samples decreased significantly (p<0.001) with >75 % fat replacement.
Novelty and scientific contribution. It can be concluded that the oil replacement rate that may satisfy consumer demand without impairing the product technological and chemical quality should be <75 %. As the fat replacement ratio increases, the SFA content of cooked meatballs decreases, while the MUFA and PUFA contents increase. Considering the positive effects of reducing the intake of SFAs and increasing the intake of unsaturated fatty acids on non-communicable diseases such as cardiovascular diseases, fat replacement in meatballs is important for future developments.
期刊介绍:
Food Technology and Biotechnology (FTB) is a diamond open access, peer-reviewed international quarterly scientific journal that publishes papers covering a wide range of topics, including molecular biology, genetic engineering, biochemistry, microbiology, biochemical engineering and biotechnological processing, food science, analysis of food ingredients and final products, food processing and technology, oenology and waste treatment.
The Journal is published by the University of Zagreb, Faculty of Food Technology and Biotechnology, Croatia. It is an official journal of Croatian Society of Biotechnology and Slovenian Microbiological Society, financed by the Croatian Ministry of Science and Education, and supported by the Croatian Academy of Sciences and Arts.