{"title":"Numerical study on aerodynamic and noise performance of bionic asymmetric airfoil with surface grooves","authors":"Mingjun Wen, Liming Wu","doi":"10.1063/5.0193391","DOIUrl":null,"url":null,"abstract":"Based on the asymmetric NACA4412 baseline airfoil, a bionic airfoil with surface grooves is presented. For the bio-inspired airfoil, non-smooth grooves are placed on the trailing edge of NACA4412 airfoil. To reveal the effects of non-smooth structures of the trailing edge on the aerodynamic and noise performance of airfoil, large eddy simulation and Ffowcs Williams–Hawkings acoustic analogy are adopted to investigate the aerodynamic performance and acoustic characteristics of the baseline NACA4412 airfoil and bionic airfoil at the chord-based Reynolds number, Re = 1.2 ×105. The numerical results show that the aerodynamic performance of the bionic airfoil is better than that of the baseline airfoil when the angle of attack is 14°. For all the sound frequencies studied in this study, the overall sound pressure level of the bionic airfoil is reduced by 2.0 dB at angle of attack is 14°. At the same time, the mechanisms of flow control and noise reduction of non-smooth surface grooves at the trailing edge are also revealed. As a result, the presence of surface grooves near the trailing edge of the airfoil can effectively improve the aerodynamic performance and reduce the aerodynamic noise of the traditional asymmetric airfoil, especially at high angles of attack.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0193391","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Based on the asymmetric NACA4412 baseline airfoil, a bionic airfoil with surface grooves is presented. For the bio-inspired airfoil, non-smooth grooves are placed on the trailing edge of NACA4412 airfoil. To reveal the effects of non-smooth structures of the trailing edge on the aerodynamic and noise performance of airfoil, large eddy simulation and Ffowcs Williams–Hawkings acoustic analogy are adopted to investigate the aerodynamic performance and acoustic characteristics of the baseline NACA4412 airfoil and bionic airfoil at the chord-based Reynolds number, Re = 1.2 ×105. The numerical results show that the aerodynamic performance of the bionic airfoil is better than that of the baseline airfoil when the angle of attack is 14°. For all the sound frequencies studied in this study, the overall sound pressure level of the bionic airfoil is reduced by 2.0 dB at angle of attack is 14°. At the same time, the mechanisms of flow control and noise reduction of non-smooth surface grooves at the trailing edge are also revealed. As a result, the presence of surface grooves near the trailing edge of the airfoil can effectively improve the aerodynamic performance and reduce the aerodynamic noise of the traditional asymmetric airfoil, especially at high angles of attack.
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy