Symbol-level precoding scheme robust to channel estimation errors in wireless fading channels

IF 4.1 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS ICT Express Pub Date : 2024-10-01 DOI:10.1016/j.icte.2024.03.006
{"title":"Symbol-level precoding scheme robust to channel estimation errors in wireless fading channels","authors":"","doi":"10.1016/j.icte.2024.03.006","DOIUrl":null,"url":null,"abstract":"<div><div>Most studies on symbol-level (SL) precoding have assumed that channel estimation is perfect. However, because interference signals or additive white Gaussian noise exist in the received signal for channel estimation, channel estimation errors always exist. In this paper, we propose an SL precoding scheme that is robust to channel estimation errors. First, using the characteristics of the channel estimation errors, we derive an equation for the worst-case mean squared error (MSE) which is the maximum of the MSE. Then by designing the SL precoding to minimize the worst-case MSE, it has robust characteristics against channel estimation errors.</div></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"10 5","pages":"Pages 1066-1072"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959524000304","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Most studies on symbol-level (SL) precoding have assumed that channel estimation is perfect. However, because interference signals or additive white Gaussian noise exist in the received signal for channel estimation, channel estimation errors always exist. In this paper, we propose an SL precoding scheme that is robust to channel estimation errors. First, using the characteristics of the channel estimation errors, we derive an equation for the worst-case mean squared error (MSE) which is the maximum of the MSE. Then by designing the SL precoding to minimize the worst-case MSE, it has robust characteristics against channel estimation errors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对无线衰减信道中的信道估计误差具有鲁棒性的符号级预编码方案
大多数关于符号级(SL)预编码的研究都假设信道估计是完美的。然而,由于用于信道估计的接收信号中存在干扰信号或加性白高斯噪声,信道估计误差始终存在。本文提出了一种对信道估计误差具有鲁棒性的 SL 预编码方案。首先,我们利用信道估计误差的特点,推导出最坏情况下的均方误差(MSE)方程,即 MSE 的最大值。然后,通过设计 SL 预编码来最小化最坏情况下的 MSE,从而使其对信道估计误差具有稳健特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
期刊最新文献
Editorial Board Performance analysis of multi-hop low earth orbit satellite network over mixed RF/FSO links Symbol-level precoding scheme robust to channel estimation errors in wireless fading channels Hybrid Approach with Membership-Density Based Oversampling for handling multi-class imbalance in Internet Traffic Identification with overlapping and noise Integrated beamforming and trajectory optimization algorithm for RIS-assisted UAV system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1