Integrasi Audit Trail dan Teknik Clustering untuk Segmentasi dan Kategorisasi Aktivitas Log

Candra Heru Saputra
{"title":"Integrasi Audit Trail dan Teknik Clustering untuk Segmentasi dan Kategorisasi Aktivitas Log","authors":"Candra Heru Saputra","doi":"10.25126/jtiik.20241118071","DOIUrl":null,"url":null,"abstract":"Dengan berkembangnya teknologi, organisasi dan perusahaan kini mengumpulkan data dalam jumlah yang sangat besar, yang tercatat dalam log sistem untuk tujuan audit keamanan, pemantauan, dan investigasi forensik. Namun, tantangan utama muncul saat analis keamanan harus menangani volume data log yang besar, yang seringkali membuat sulit untuk mengidentifikasi aktivitas mencurigakan atau abnormal. Dalam upaya mengatasi tantangan analisis log yang berskala besar dalam sistem informasi, penelitian ini bertujuan untuk mengintegrasikan teknik audit trail dengan metode clustering, khususnya menggunakan K-Means, untuk segmentasi dan kategorisasi aktivitas log. Penelitian ini mencari pendekatan yang dapat meningkatkan efisiensi dalam menelusuri dan menganalisis log aktivitas dengan mengelompokkan data log yang serupa. Metode yang digunakan mencakup desain eksperimental, pengumpulan data audit trail yang komprehensif, preprocessing data, implementasi algoritma K-Means, dan evaluasi hasil clustering. Hasil penelitian mengindikasikan bahwa penerapan K-Means pada audit trail memungkinkan identifikasi pola aktivitas yang signifikan, memudahkan deteksi anomali dengan cepat, dan menyederhanakan proses audit keamanan data, yang mengarah pada pemahaman yang lebih baik dalam pengelolaan risiko keamanan informasi.","PeriodicalId":32501,"journal":{"name":"Jurnal Teknologi Informasi dan Ilmu Komputer","volume":"18 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi Informasi dan Ilmu Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25126/jtiik.20241118071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dengan berkembangnya teknologi, organisasi dan perusahaan kini mengumpulkan data dalam jumlah yang sangat besar, yang tercatat dalam log sistem untuk tujuan audit keamanan, pemantauan, dan investigasi forensik. Namun, tantangan utama muncul saat analis keamanan harus menangani volume data log yang besar, yang seringkali membuat sulit untuk mengidentifikasi aktivitas mencurigakan atau abnormal. Dalam upaya mengatasi tantangan analisis log yang berskala besar dalam sistem informasi, penelitian ini bertujuan untuk mengintegrasikan teknik audit trail dengan metode clustering, khususnya menggunakan K-Means, untuk segmentasi dan kategorisasi aktivitas log. Penelitian ini mencari pendekatan yang dapat meningkatkan efisiensi dalam menelusuri dan menganalisis log aktivitas dengan mengelompokkan data log yang serupa. Metode yang digunakan mencakup desain eksperimental, pengumpulan data audit trail yang komprehensif, preprocessing data, implementasi algoritma K-Means, dan evaluasi hasil clustering. Hasil penelitian mengindikasikan bahwa penerapan K-Means pada audit trail memungkinkan identifikasi pola aktivitas yang signifikan, memudahkan deteksi anomali dengan cepat, dan menyederhanakan proses audit keamanan data, yang mengarah pada pemahaman yang lebih baik dalam pengelolaan risiko keamanan informasi.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
整合审计跟踪和聚类技术,对活动日志进行分割和分类
随着技术的发展,组织和企业现在正在收集大量数据,这些数据被记录在系统日志中,用于安全审计、监控和取证调查。然而,当安全分析人员需要处理大量日志数据时,就会面临重大挑战,因为这往往会导致难以识别可疑或异常活动。为了克服信息系统中大规模日志分析所面临的挑战,本研究旨在将审计跟踪技术与聚类方法(特别是使用 K-Means)相结合,对日志活动进行分割和分类。本研究寻求一种方法,通过对类似日志数据进行聚类,提高追踪和分析活动日志的效率。采用的方法包括实验设计、收集全面的审计跟踪数据、数据预处理、K-Means 算法的实施以及聚类结果的评估。研究结果表明,将 K-Means 算法应用于审计跟踪可识别重要的活动模式,便于快速检测异常情况,并简化数据安全审计流程,从而更好地了解信息安全风险管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
期刊最新文献
Schedule Cat Feeder Berbasis Internet of Things Menggunakan Wemos D1 Mini dan Telegram Preprocessing Data dan Klasifikasi untuk Prediksi Kinerja Akademik Siswa Peningkatan Performa Pengenalan Wajah pada Gambar Low-Resolution Menggunakan Metode Super-Resolution Analisis Sentimen Ulasan Rumah Makan Menggunakan Perbandingan Algoritma Support Vector Machine dengan Naive bayes (Studi Kasus: Ayam Goreng Nelongso Cabang Singosari, Malang) Model Classifer Judul Berita Pariwisata Indonesia Berdasarkan Sentimen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1