Highlighting Water Stress in Apple Seedlings Using HSI Texture with Machine Learning Technique

Yanying An, Ran Wang
{"title":"Highlighting Water Stress in Apple Seedlings Using HSI Texture with Machine Learning Technique","authors":"Yanying An, Ran Wang","doi":"10.19044/esj.2024.v20n6p1","DOIUrl":null,"url":null,"abstract":"Apples are known for their nutrition and economic value. Accurate and rapid diagnosis of water status in apple seedlings on an individual rootstock basis is a prerequisite for precision water management. This study presents a rapid and non-destructive approach for estimating water content in apple seedlings at leaf levels. A PIKA L system collects hyperspectral images (400-1000nm) of apple leaves. Our research extracts spatial information, gray-level co-occurrence matrix (GLCM), from feature wavelength images of hypercubes. Machine learning methods are applied to these spatial feature matrixs to identify apple leaves under different water stresses. In addition, differences in spectral responses were analysed using machine learning techniques for sorting apple seedlings with varying water treatments (dry, normal, and overwatering). Also, we measure chlorophyll to determine the relationship between hyperspectral characteristics and physiological changes. The achievements of the research indicate that the fusion of texture and hyperspectral imaging coupled with machine learning techniques is promising and presents a powerful potential to determine the water stress in the leaves of apple seedlings.","PeriodicalId":12225,"journal":{"name":"European Scientific Journal, ESJ","volume":"7 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Scientific Journal, ESJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19044/esj.2024.v20n6p1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Apples are known for their nutrition and economic value. Accurate and rapid diagnosis of water status in apple seedlings on an individual rootstock basis is a prerequisite for precision water management. This study presents a rapid and non-destructive approach for estimating water content in apple seedlings at leaf levels. A PIKA L system collects hyperspectral images (400-1000nm) of apple leaves. Our research extracts spatial information, gray-level co-occurrence matrix (GLCM), from feature wavelength images of hypercubes. Machine learning methods are applied to these spatial feature matrixs to identify apple leaves under different water stresses. In addition, differences in spectral responses were analysed using machine learning techniques for sorting apple seedlings with varying water treatments (dry, normal, and overwatering). Also, we measure chlorophyll to determine the relationship between hyperspectral characteristics and physiological changes. The achievements of the research indicate that the fusion of texture and hyperspectral imaging coupled with machine learning techniques is promising and presents a powerful potential to determine the water stress in the leaves of apple seedlings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习技术的 HSI 纹理突出显示苹果幼苗的水分胁迫
苹果以其营养和经济价值而闻名。以单株根茎为基础对苹果幼苗的水分状况进行准确而快速的诊断,是进行精确水分管理的先决条件。本研究提出了一种快速、无损的方法,用于估算苹果幼苗叶片层面的含水量。PIKA L 系统收集苹果叶片的高光谱图像(400-1000 纳米)。我们的研究从超立方体的特征波长图像中提取空间信息,即灰度级共现矩阵(GLCM)。机器学习方法应用于这些空间特征矩阵,以识别不同水分胁迫下的苹果叶片。此外,我们还利用机器学习技术分析了光谱响应的差异,以对不同水分处理(干燥、正常和过度浇水)下的苹果幼苗进行分类。此外,我们还测量叶绿素,以确定高光谱特征与生理变化之间的关系。研究成果表明,纹理和高光谱成像与机器学习技术的融合前景广阔,为确定苹果幼苗叶片的水分胁迫提供了强大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Philosophy of Probability Value Behavior: Fractions and Composite Probability Functions in the Continuous Case Le Rôle de la Justice dans la Mise en Œuvre d’un Développement Durable au Burundi La Modernisation des Systèmes Comptables de l’État Marocain à la Lumière des Normes IPSAS Contribution à l’Analyse du Marché des Plantes Médicinales dans la Région de Lubumbashi, RD Congo : Acteurs et Enjeux Socio-Économiques Connaissances, Attitudes et Pratiques de la Dépigmentation Cosmétique Volontaire des Jeunes Filles en Milieu Scolaire et Universitaire du Département des Collines au Bénin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1