Microstructures and improved properties of Cu–Mo alloys induced by high current pulsed electron beam irradiation

Fangqiang Guo, Conglin Zhang, Jintong Guan, Chengjian Ma, Zirun Yang, Qingfeng Guan
{"title":"Microstructures and improved properties of Cu–Mo alloys induced by high current pulsed electron beam irradiation","authors":"Fangqiang Guo, Conglin Zhang, Jintong Guan, Chengjian Ma, Zirun Yang, Qingfeng Guan","doi":"10.1116/6.0003374","DOIUrl":null,"url":null,"abstract":"In this paper, a Cu–Mo alloying layer with improved properties was fabricated by high current pulsed electron beam (HCPEB) irradiation. The microstructure of the modified layer was investigated by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The microhardness and friction properties were also measured. After HCPEB irradiation, nano Mo particles, solid solution, and long-period superlattice structures were generated on the surface of Cu–Mo alloys, together with the formation of defect structures. These microstructures led to a significant increase in the surface hardness. The results of sliding wear tests indicated that the HCPEB-irradiated samples exhibited better properties compared with the initial one, which was attributed to the ultrafine Mo particles and the hardened surface.","PeriodicalId":170900,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"302 1‐2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0003374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a Cu–Mo alloying layer with improved properties was fabricated by high current pulsed electron beam (HCPEB) irradiation. The microstructure of the modified layer was investigated by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The microhardness and friction properties were also measured. After HCPEB irradiation, nano Mo particles, solid solution, and long-period superlattice structures were generated on the surface of Cu–Mo alloys, together with the formation of defect structures. These microstructures led to a significant increase in the surface hardness. The results of sliding wear tests indicated that the HCPEB-irradiated samples exhibited better properties compared with the initial one, which was attributed to the ultrafine Mo particles and the hardened surface.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大电流脉冲电子束辐照诱导铜-钼合金的微观结构和更佳性能
本文利用大电流脉冲电子束(HCPEB)辐照技术制备了具有更好性能的铜钼合金层。通过 X 射线衍射、扫描电子显微镜和透射电子显微镜研究了改性层的微观结构。同时还测量了微硬度和摩擦性能。经 HCPEB 辐照后,铜钼合金表面产生了纳米钼颗粒、固溶体和长周期超晶格结构,并形成了缺陷结构。这些微结构显著提高了表面硬度。滑动磨损测试结果表明,与初始样品相比,经过 HCPEB 辐照的样品具有更好的性能,这归功于超细 Mo 粒子和硬化的表面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measurements of atomic hydrogen recombination coefficients and the reduction of Al2O3 using a heat flux sensor Extension of ion-neutral reactive collision model DNT+ to polar molecules based on average dipole orientation theory Molecular beam epitaxy of Pd-Fe graded alloy films for standing spin waves control Revealing the controlling mechanisms of atomic layer etching for high-k dielectrics in conventional inductively coupled plasma etching tool Introduction to reproducible laboratory hard x-ray photoelectron spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1