{"title":"Back analysis of shear strength parameters of slope based on BP neural network and genetic algorithm","authors":"Xiaopeng Deng, Xinghua Xiang","doi":"10.1002/eng2.12872","DOIUrl":null,"url":null,"abstract":"<p>Efficient and accurate acquisition of slope shear strength parameters is the key to slope stability analysis and landslide prevention engineering design. This paper establishes a back analysis method based on uniform design, artificial neural network, and genetic algorithm. It can obtain the shear strength parameters of slopes based on information such as the radius and center coordinates of the slip surface obtained from on-site investigations. This method has been applied to engineering practice. The research results indicate that the stability of the waste dump slope is most sensitive to the response of the internal friction angle of the loose body, followed by cohesion, and least sensitive to the response of the soil volume weight. This method can effectively reduce the number of network training samples and efficiently and quickly determine the initial weights of the BP (abbreviation for back-propagation) neural network. This method can efficiently and quickly conduct back analysis to obtain the shear strength parameters of slopes. Using the obtained shear strength parameters for slope stability calculation, the most dangerous slip surface abscissa error, ordinate error, and slip surface radius error are only 3.59%, 0.95%, and 1.83%. It is recommended to promote the back analysis method of shear strength parameters in engineering practice in the future.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.12872","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.12872","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient and accurate acquisition of slope shear strength parameters is the key to slope stability analysis and landslide prevention engineering design. This paper establishes a back analysis method based on uniform design, artificial neural network, and genetic algorithm. It can obtain the shear strength parameters of slopes based on information such as the radius and center coordinates of the slip surface obtained from on-site investigations. This method has been applied to engineering practice. The research results indicate that the stability of the waste dump slope is most sensitive to the response of the internal friction angle of the loose body, followed by cohesion, and least sensitive to the response of the soil volume weight. This method can effectively reduce the number of network training samples and efficiently and quickly determine the initial weights of the BP (abbreviation for back-propagation) neural network. This method can efficiently and quickly conduct back analysis to obtain the shear strength parameters of slopes. Using the obtained shear strength parameters for slope stability calculation, the most dangerous slip surface abscissa error, ordinate error, and slip surface radius error are only 3.59%, 0.95%, and 1.83%. It is recommended to promote the back analysis method of shear strength parameters in engineering practice in the future.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.