Enhancing Disease Prediction with a Hybrid CNN-LSTM Framework in EHRs

Jingxiao Tian, Ao Xiang, Yuan Feng, Qin Yang, Houze Liu
{"title":"Enhancing Disease Prediction with a Hybrid CNN-LSTM Framework in EHRs","authors":"Jingxiao Tian, Ao Xiang, Yuan Feng, Qin Yang, Houze Liu","doi":"10.53469/jtpes.2024.04(02).02","DOIUrl":null,"url":null,"abstract":"This study developed a novel hybrid deep learning framework aimed at enhancing the accuracy of disease prediction using temporal data from Electronic Health Records (EHRs). The framework integrates Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks, leveraging the strength of CNNs in extracting hierarchical feature representations from complex data and the capability of LSTMs in capturing long-term dependencies in temporal information. An empirical investigation on real-world EHR datasets revealed that, compared to Support Vector Machine (SVM) models, standalone CNNs, and LSTMs, this hybrid deep learning network demonstrated significantly higher prediction accuracy in disease prediction tasks. This research not only advances the performance of predictive models in the health data analytics domain but also underscores the importance of adopting and further developing advanced deep learning technologies to address the complexity of modern medical data. Our findings advocate for a shift towards integrating complex neural network architectures in developing predictive models, potentially offering avenues for more personalized and proactive disease management and care, thereby setting new standards for future health management practices.","PeriodicalId":489516,"journal":{"name":"Journal of Theory and Practice of Engineering Science","volume":"20 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theory and Practice of Engineering Science","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.53469/jtpes.2024.04(02).02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This study developed a novel hybrid deep learning framework aimed at enhancing the accuracy of disease prediction using temporal data from Electronic Health Records (EHRs). The framework integrates Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks, leveraging the strength of CNNs in extracting hierarchical feature representations from complex data and the capability of LSTMs in capturing long-term dependencies in temporal information. An empirical investigation on real-world EHR datasets revealed that, compared to Support Vector Machine (SVM) models, standalone CNNs, and LSTMs, this hybrid deep learning network demonstrated significantly higher prediction accuracy in disease prediction tasks. This research not only advances the performance of predictive models in the health data analytics domain but also underscores the importance of adopting and further developing advanced deep learning technologies to address the complexity of modern medical data. Our findings advocate for a shift towards integrating complex neural network architectures in developing predictive models, potentially offering avenues for more personalized and proactive disease management and care, thereby setting new standards for future health management practices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用电子病历中的混合 CNN-LSTM 框架加强疾病预测
本研究开发了一种新型混合深度学习框架,旨在利用电子健康记录(EHR)中的时间数据提高疾病预测的准确性。该框架整合了卷积神经网络(CNN)和长短期记忆(LSTM)网络,充分利用了 CNN 从复杂数据中提取分层特征表征的优势和 LSTM 捕捉时间信息中长期依赖关系的能力。在真实 EHR 数据集上进行的实证调查显示,与支持向量机(SVM)模型、独立 CNN 和 LSTM 相比,这种混合深度学习网络在疾病预测任务中的预测准确率明显更高。这项研究不仅提高了健康数据分析领域预测模型的性能,还强调了采用和进一步开发先进的深度学习技术以应对现代医学数据复杂性的重要性。我们的研究结果主张在开发预测模型时转向整合复杂的神经网络架构,从而为更加个性化和前瞻性的疾病管理和护理提供潜在的途径,从而为未来的健康管理实践设定新的标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Review on Mechanical Automation Control System Enhanced Heart Attack Prediction Using eXtreme Gradient Boosting Feasibility Study of UHPC Reinforced Masonry Structure Review of Research on Nuclear Signal Pulse Shaping Analysis on Machining Precision Control of Mechanical Die
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1