Physics-agnostic inverse design using transfer matrices

Nathaniel Morrison, Shuaiwei Pan, Eric Y. Ma
{"title":"Physics-agnostic inverse design using transfer matrices","authors":"Nathaniel Morrison, Shuaiwei Pan, Eric Y. Ma","doi":"10.1063/5.0179457","DOIUrl":null,"url":null,"abstract":"Inverse design is an application of machine learning to device design, giving the computer maximal latitude in generating novel structures, learning from their performance, and optimizing them to suit the designer’s needs. Gradient-based optimizers, augmented by the adjoint method to efficiently compute the gradient, are particularly attractive for this approach and have proven highly successful with finite-element and finite-difference physics simulators. Here, we extend adjoint optimization to the transfer matrix method, an accurate and efficient simulator for a wide variety of quasi-1D physical phenomena. We leverage this versatility to develop a physics-agnostic inverse design framework and apply it to three distinct problems, each presenting a substantial challenge for conventional design methods: optics, designing a multivariate optical element for compressive sensing; acoustics, designing a high-performance anti-sonar submarine coating; and quantum mechanics, designing a tunable double-bandpass electron energy filter.","PeriodicalId":502250,"journal":{"name":"APL Machine Learning","volume":"43 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0179457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Inverse design is an application of machine learning to device design, giving the computer maximal latitude in generating novel structures, learning from their performance, and optimizing them to suit the designer’s needs. Gradient-based optimizers, augmented by the adjoint method to efficiently compute the gradient, are particularly attractive for this approach and have proven highly successful with finite-element and finite-difference physics simulators. Here, we extend adjoint optimization to the transfer matrix method, an accurate and efficient simulator for a wide variety of quasi-1D physical phenomena. We leverage this versatility to develop a physics-agnostic inverse design framework and apply it to three distinct problems, each presenting a substantial challenge for conventional design methods: optics, designing a multivariate optical element for compressive sensing; acoustics, designing a high-performance anti-sonar submarine coating; and quantum mechanics, designing a tunable double-bandpass electron energy filter.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用传递矩阵进行物理无关的逆设计
逆向设计是机器学习在设备设计中的应用,它赋予计算机最大的自由度来生成新颖的结构,学习它们的性能,并对它们进行优化,以满足设计者的需求。以梯度为基础的优化器,辅以高效计算梯度的邻接法,对这种方法特别有吸引力,并已在有限元和有限差分物理模拟器中取得了巨大成功。在这里,我们将邻接优化扩展到传递矩阵法,这是一种精确高效的模拟器,可用于模拟各种准一维物理现象。我们利用这种多功能性开发了一个物理无关的逆向设计框架,并将其应用于三个不同的问题,每个问题都对传统设计方法提出了巨大挑战:光学,设计用于压缩传感的多变量光学元件;声学,设计高性能反声纳潜艇涂层;量子力学,设计可调谐双带通电子能量滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computational experiments with cellular-automata generated images reveal intrinsic limitations of convolutional neural networks on pattern recognition tasks Simulation-trained machine learning models for Lorentz transmission electron microscopy Enhanced spectrum prediction using deep learning models with multi-frequency supplementary inputs Cell detection with convolutional spiking neural network for neuromorphic cytometry The development of thermodynamically consistent and physics-informed equation-of-state model through machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1