Gabriel Kiarie, Ciira wa Maina, Kumbirayi Nyachionjeka
{"title":"A low-cost Raspberry Pi based time domain reflectometer for fault detection in electric fences","authors":"Gabriel Kiarie, Ciira wa Maina, Kumbirayi Nyachionjeka","doi":"10.1049/smt2.12183","DOIUrl":null,"url":null,"abstract":"<p>Electric fences used to create protected areas (PAs) are prone to faults that affect their operation. The conventional method of measuring the voltage of the fence periodically to detect faults and walking along the fence to locate the faults is inefficient and time consuming. This paper presents a low-cost Raspberry Pi time domain reflectometer (TDR) for fault detection and localisation in electric fences. The system is designed using cheap off-the-shelf components. It uses time domain reflectometry to detect hard (open and short circuit) faults in electric fences. Time domain reflectometry is a method of detecting and locating faults in electrical cables. The Raspberry Pi TDR is evaluated and it has successfully detected and located open circuit and short circuit faults in electric fences with a mean absolute error of 1.52 m. The Raspberry Pi TDR offers the potential to remotely monitor electric fences autonomously, hence improving their effectiveness.</p>","PeriodicalId":54999,"journal":{"name":"Iet Science Measurement & Technology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/smt2.12183","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Science Measurement & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/smt2.12183","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Electric fences used to create protected areas (PAs) are prone to faults that affect their operation. The conventional method of measuring the voltage of the fence periodically to detect faults and walking along the fence to locate the faults is inefficient and time consuming. This paper presents a low-cost Raspberry Pi time domain reflectometer (TDR) for fault detection and localisation in electric fences. The system is designed using cheap off-the-shelf components. It uses time domain reflectometry to detect hard (open and short circuit) faults in electric fences. Time domain reflectometry is a method of detecting and locating faults in electrical cables. The Raspberry Pi TDR is evaluated and it has successfully detected and located open circuit and short circuit faults in electric fences with a mean absolute error of 1.52 m. The Raspberry Pi TDR offers the potential to remotely monitor electric fences autonomously, hence improving their effectiveness.
用于创建保护区(PA)的电围栏很容易出现故障,从而影响其运行。传统的方法是定期测量栅栏的电压以检测故障,然后沿着栅栏行走以定位故障,这种方法既低效又耗时。本文介绍了一种用于电围栏故障检测和定位的低成本 Raspberry Pi 时域反射仪 (TDR)。该系统的设计使用了廉价的现成组件。它使用时域反射仪检测电围栏中的硬故障(开路和短路)。时域反射仪是一种检测和定位电缆故障的方法。对 Raspberry Pi 时域反射仪进行了评估,结果表明它成功地检测和定位了电围栏中的开路和短路故障,平均绝对误差为 1.52 米。
期刊介绍:
IET Science, Measurement & Technology publishes papers in science, engineering and technology underpinning electronic and electrical engineering, nanotechnology and medical instrumentation.The emphasis of the journal is on theory, simulation methodologies and measurement techniques.
The major themes of the journal are:
- electromagnetism including electromagnetic theory, computational electromagnetics and EMC
- properties and applications of dielectric, magnetic, magneto-optic, piezoelectric materials down to the nanometre scale
- measurement and instrumentation including sensors, actuators, medical instrumentation, fundamentals of measurement including measurement standards, uncertainty, dissemination and calibration
Applications are welcome for illustrative purposes but the novelty and originality should focus on the proposed new methods.