Thickness dependent thermal conductivity of strontium titanate thin films on silicon substrate

R. Annam, Swapneel Danayat, Avinash Nayal, Fatema Tarannum, Matthew Chrysler, Joseph H. Ngai, Jiechao Jiang, Aaron J. Schmidt, J. Garg
{"title":"Thickness dependent thermal conductivity of strontium titanate thin films on silicon substrate","authors":"R. Annam, Swapneel Danayat, Avinash Nayal, Fatema Tarannum, Matthew Chrysler, Joseph H. Ngai, Jiechao Jiang, Aaron J. Schmidt, J. Garg","doi":"10.1116/6.0003320","DOIUrl":null,"url":null,"abstract":"Perovskite materials, of which strontium titanate (STO) and its thin films are an example, have attracted significant scientific interest because of their desirable properties and the potential to tune thermal conductivity by employing several techniques. Notably, strontium titanate thin films on silicon (Si) substrates serve as a fundamental platform for integrating various oxides onto Si substrates, making it crucial to understand the thermal properties of STO on Si. This work investigates the thermal conductivity of STO thin films on an Si substrate for varying film thicknesses (12, 50, 80, and 200 nm) at room temperature (∼300 K). The thin films are deposited using molecular beam epitaxy on the Si substrate and their thermal conductivity is characterized using the frequency domain thermoreflectance (FDTR) method. The measured values range from 7.4 ± 0.74 for the 200 nm thick film to 0.8 ± 0.1 W m−1 K−1 for the 12 nm thick film, showing a large effect of the film thickness on the thermal conductivity values. The trend of the values is diminishing with the corresponding decrease in the thin film thickness, with a reduction of 38%–93% in the thermal conductivity values, for film thicknesses ranging from 200 to 12 nm. This reduction in the values is relative to the bulk single crystal values of STO, which may range from 11 to 13.5 W m−1 K−1 [Yu et al., Appl. Phys. Lett. 92, 191911 (2008) and Fumega et al., Phys. Rev. Mater. 4, 033606 (2020)], as measured by our FDTR-based experiment. The study also explores the evaluation of volumetric heat capacity (Cp). The measured volumetric heat capacity for the 200 nm thin film is 3.07 MJ m−3 K−1, which is in reasonable agreement with the values available in the literature.","PeriodicalId":170900,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"39 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0003320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite materials, of which strontium titanate (STO) and its thin films are an example, have attracted significant scientific interest because of their desirable properties and the potential to tune thermal conductivity by employing several techniques. Notably, strontium titanate thin films on silicon (Si) substrates serve as a fundamental platform for integrating various oxides onto Si substrates, making it crucial to understand the thermal properties of STO on Si. This work investigates the thermal conductivity of STO thin films on an Si substrate for varying film thicknesses (12, 50, 80, and 200 nm) at room temperature (∼300 K). The thin films are deposited using molecular beam epitaxy on the Si substrate and their thermal conductivity is characterized using the frequency domain thermoreflectance (FDTR) method. The measured values range from 7.4 ± 0.74 for the 200 nm thick film to 0.8 ± 0.1 W m−1 K−1 for the 12 nm thick film, showing a large effect of the film thickness on the thermal conductivity values. The trend of the values is diminishing with the corresponding decrease in the thin film thickness, with a reduction of 38%–93% in the thermal conductivity values, for film thicknesses ranging from 200 to 12 nm. This reduction in the values is relative to the bulk single crystal values of STO, which may range from 11 to 13.5 W m−1 K−1 [Yu et al., Appl. Phys. Lett. 92, 191911 (2008) and Fumega et al., Phys. Rev. Mater. 4, 033606 (2020)], as measured by our FDTR-based experiment. The study also explores the evaluation of volumetric heat capacity (Cp). The measured volumetric heat capacity for the 200 nm thin film is 3.07 MJ m−3 K−1, which is in reasonable agreement with the values available in the literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硅衬底上钛酸锶薄膜随厚度变化的热导率
透镜材料(钛酸锶(STO)及其薄膜就是其中的一个例子)因其理想的特性以及通过采用多种技术调节热导率的潜力而引起了科学界的极大兴趣。值得注意的是,硅(Si)基底上的钛酸锶薄膜是将各种氧化物集成到硅基底上的基本平台,因此了解硅基底上的 STO 的热特性至关重要。这项工作研究了硅基底上不同厚度(12、50、80 和 200 nm)的 STO 薄膜在室温(∼300 K)下的热导率。薄膜采用分子束外延技术沉积在硅基底上,其热导率采用频域热反射(FDTR)方法进行表征。测量值范围从 200 nm 厚薄膜的 7.4 ± 0.74 到 12 nm 厚薄膜的 0.8 ± 0.1 W m-1 K-1,表明薄膜厚度对热导率值有很大影响。随着薄膜厚度的相应减小,热导率值也呈减小趋势,薄膜厚度在 200 纳米到 12 纳米之间时,热导率值减小了 38% 到 93%。相对于 STO 的块状单晶而言,热导率值的降低幅度在 11 到 13.5 W m-1 K-1 之间 [Yu 等人,Appl.92, 191911 (2008) and Fumega et al.4, 033606 (2020)],这是我们基于 FDTR 的实验所测得的结果。本研究还探讨了体积热容(Cp)的评估。测得的 200 纳米薄膜的体积热容为 3.07 MJ m-3 K-1,与文献中的数值基本一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measurements of atomic hydrogen recombination coefficients and the reduction of Al2O3 using a heat flux sensor Extension of ion-neutral reactive collision model DNT+ to polar molecules based on average dipole orientation theory Molecular beam epitaxy of Pd-Fe graded alloy films for standing spin waves control Revealing the controlling mechanisms of atomic layer etching for high-k dielectrics in conventional inductively coupled plasma etching tool Introduction to reproducible laboratory hard x-ray photoelectron spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1