Improving the performance of a condensation water production system through support vector machine modeling and genetic algorithm optimization

Water Supply Pub Date : 2024-02-26 DOI:10.2166/ws.2024.034
Shayan Hajinajaf, Shaban Ghavami Jolandan, Hassan Masoudi, Abbas Rohani
{"title":"Improving the performance of a condensation water production system through support vector machine modeling and genetic algorithm optimization","authors":"Shayan Hajinajaf, Shaban Ghavami Jolandan, Hassan Masoudi, Abbas Rohani","doi":"10.2166/ws.2024.034","DOIUrl":null,"url":null,"abstract":"\n \n Water scarcity is recognized as a critical global concern, especially in rural regions, and one viable solution involves extracting water from atmospheric humidity by leveraging subterranean coldness. This study meticulously evaluates the operational efficacy of a water production system by examining four pivotal factors: buried pipe length (TL), air flow rate (AFR), air temperature (AT), and air humidity (AH). A positive correlation between these variables and water vapor (WV) production is established, with AT exerting the most pronounced influence. Significantly, the analysis of variance reveals the main and interactive effects of the variables, except for TL × AFR, at a 5% significance level. To enhance understanding of the intricate interplay among these factors, a proficient least squares support vector machines model is devised, employing a radial basis function kernel. This model demonstrates an impressive 98% concurrence between projected and empirical data, with a minimal error of 0.66 mL and 5.99%. An in-depth sensitivity analysis underscores the differential impact of AT, AH, TL, and AFR on WV prediction. Optimal values of 3.98 m, 6.89 m3/h, 46.30 °C, and 86.62% for TL, AFR, AT, and AH, respectively, are obtained through subsequent optimization of independent variables using genetic algorithms, resulting in a notable water production of 23.61 mL.","PeriodicalId":23725,"journal":{"name":"Water Supply","volume":"245 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Supply","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/ws.2024.034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Water scarcity is recognized as a critical global concern, especially in rural regions, and one viable solution involves extracting water from atmospheric humidity by leveraging subterranean coldness. This study meticulously evaluates the operational efficacy of a water production system by examining four pivotal factors: buried pipe length (TL), air flow rate (AFR), air temperature (AT), and air humidity (AH). A positive correlation between these variables and water vapor (WV) production is established, with AT exerting the most pronounced influence. Significantly, the analysis of variance reveals the main and interactive effects of the variables, except for TL × AFR, at a 5% significance level. To enhance understanding of the intricate interplay among these factors, a proficient least squares support vector machines model is devised, employing a radial basis function kernel. This model demonstrates an impressive 98% concurrence between projected and empirical data, with a minimal error of 0.66 mL and 5.99%. An in-depth sensitivity analysis underscores the differential impact of AT, AH, TL, and AFR on WV prediction. Optimal values of 3.98 m, 6.89 m3/h, 46.30 °C, and 86.62% for TL, AFR, AT, and AH, respectively, are obtained through subsequent optimization of independent variables using genetic algorithms, resulting in a notable water production of 23.61 mL.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过支持向量机建模和遗传算法优化提高冷凝水生产系统的性能
水资源短缺是全球公认的重大问题,尤其是在农村地区,而可行的解决方案之一就是利用地下低温从大气湿度中提取水。本研究通过考察四个关键因素:埋管长度(TL)、空气流速(AFR)、空气温度(AT)和空气湿度(AH),对制水系统的运行效率进行了细致评估。这些变量与水蒸气(WV)产生量之间呈正相关,其中 AT 的影响最为明显。值得注意的是,在 5%的显著性水平下,方差分析显示了各变量的主效应和交互效应,但 TL × AFR 除外。为了加深对这些因素之间错综复杂的相互作用的理解,我们采用径向基函数核设计了一个精通的最小二乘支持向量机模型。该模型显示,预测数据和经验数据的一致性达到了令人印象深刻的 98%,最小误差为 0.66 毫升和 5.99%。深入的敏感性分析强调了 AT、AH、TL 和 AFR 对 WV 预测的不同影响。通过使用遗传算法对自变量进行优化,TL、AFR、AT 和 AH 的最佳值分别为 3.98 m、6.89 m3/h、46.30 °C 和 86.62%,显著产水量为 23.61 mL。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Studying the applicability of electrodialysis technology to treat groundwater in CKDu regions, Sri Lanka: operational parameter optimization of the pilot project Flood modeling using HEC-RAS 2D and IBER 2D: a comparative study Estimation of the crop water stress index (CWSI) of sunflower (Helianthus annuus L.) using sensor-based irrigation scheduling for different irrigation levels Qualitative analysis of physico-chemical parameters of packaged drinking water commercially available in India Adaptation strategies for cumin in Sabzevar, Iran: planting date and irrigation management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1