Evi Puspita, Diqy Fakhrun Shiddieq, Fikri Fahru Roji
{"title":"Pemodelan Topik pada Media Berita Online Menggunakan Latent Dirichlet Allocation (Studi Kasus Merek Somethinc)","authors":"Evi Puspita, Diqy Fakhrun Shiddieq, Fikri Fahru Roji","doi":"10.57152/malcom.v4i2.1204","DOIUrl":null,"url":null,"abstract":"Somethinc merupakan salah satu merek kosmetik lokal di Indonesia yang aktif memanfaatkan media, seperti berita online untuk menyampaikan informasi terkini seputar merek. Dari banyaknya berita online mengenai merek Somethinc, sering kali topik dan tren yang sedang dibahas tidak menggambarkan informasi secara keseluruhan. Untuk menganalisis topik yang paling sering dibahas dalam berita online mengenai merek Somethinc, peneliti menggunakan metode topic modeling, yaitu Latent Dirichlet Allocation, yang dinilai lebih unggul dalam menghasilkan topik secara terstruktur. Penelitian ini memanfaatkan nilai coherence untuk menganalisis dan mengevaluasi jumlah topik terbaik, selanjutnya pendekatan human judgement digunakan untuk menginterpretasikan topik. Hasil analisis kemudian divisualisasikan secara interaktif menggunakan pyLDAvis, untuk mengetahui persebaran kata dari setiap topik. Berdasarkan hasil penelitian, jumlah topik terbaik terdapat pada topik 6 dengan nilai coherence sebesar 0.404. Keenam topik tersebut diinterpretasikan berdasarkan pendekatan human judgement, menghasilkan topik-topik meliputi produk skincare untuk kulit berjerawat, penghargaan brand kecantikan terbaik, kolaborasi produk, produk perawatan kulit dan kecantikan, kampanye pemasaran produk, dan brand lokal dengan produk perawatan kecantikan. Dapat disimpulkan bahwa jumlah topik 6 menghasilkan topik-topik yang relevan mengenai merek Somethinc.","PeriodicalId":507205,"journal":{"name":"MALCOM: Indonesian Journal of Machine Learning and Computer Science","volume":"27 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MALCOM: Indonesian Journal of Machine Learning and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.57152/malcom.v4i2.1204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Somethinc merupakan salah satu merek kosmetik lokal di Indonesia yang aktif memanfaatkan media, seperti berita online untuk menyampaikan informasi terkini seputar merek. Dari banyaknya berita online mengenai merek Somethinc, sering kali topik dan tren yang sedang dibahas tidak menggambarkan informasi secara keseluruhan. Untuk menganalisis topik yang paling sering dibahas dalam berita online mengenai merek Somethinc, peneliti menggunakan metode topic modeling, yaitu Latent Dirichlet Allocation, yang dinilai lebih unggul dalam menghasilkan topik secara terstruktur. Penelitian ini memanfaatkan nilai coherence untuk menganalisis dan mengevaluasi jumlah topik terbaik, selanjutnya pendekatan human judgement digunakan untuk menginterpretasikan topik. Hasil analisis kemudian divisualisasikan secara interaktif menggunakan pyLDAvis, untuk mengetahui persebaran kata dari setiap topik. Berdasarkan hasil penelitian, jumlah topik terbaik terdapat pada topik 6 dengan nilai coherence sebesar 0.404. Keenam topik tersebut diinterpretasikan berdasarkan pendekatan human judgement, menghasilkan topik-topik meliputi produk skincare untuk kulit berjerawat, penghargaan brand kecantikan terbaik, kolaborasi produk, produk perawatan kulit dan kecantikan, kampanye pemasaran produk, dan brand lokal dengan produk perawatan kecantikan. Dapat disimpulkan bahwa jumlah topik 6 menghasilkan topik-topik yang relevan mengenai merek Somethinc.