No evidence of the long-term in vitro toxicity of Aeroxide P25 TiO2 nanoparticles in three mammalian cell lines despite the initial reduction of cellular mitochondrial activity
S. Męczyńska-Wielgosz, T. Bartłomiejczyk, I. Grądzka, Sylwester Sommer, Aneta Węgierek-Ciuk, A. Lankoff, Katarzyna Sikorska, M. Wojewódzka, Małgorzata M Dobrzyńska, Marcin Kruszewski
{"title":"No evidence of the long-term in vitro toxicity of Aeroxide P25 TiO2 nanoparticles in three mammalian cell lines despite the initial reduction of cellular mitochondrial activity","authors":"S. Męczyńska-Wielgosz, T. Bartłomiejczyk, I. Grądzka, Sylwester Sommer, Aneta Węgierek-Ciuk, A. Lankoff, Katarzyna Sikorska, M. Wojewódzka, Małgorzata M Dobrzyńska, Marcin Kruszewski","doi":"10.2478/nuka-2024-0002","DOIUrl":null,"url":null,"abstract":"\n We studied the effects of Aeroxide P25 titanium dioxide nanoparticles (TiO2 NPs) with a diameter of 21 nm on induction of DNA damage and long-term survival of three human cell lines: hepatocellular liver carcinoma HepG2, colorectal adenocarcinoma HT29 and lung carcinoma A549. The endpoints examined were DNA breakage estimated by the comet assay and oxidative base damage recognized by formamide-pyrimidine glycosylase (FPG) estimated with the FPG+ comet assay, frequencies of histone γH2AX foci and micronuclei, apoptosis, cell metabolic activity measured by mitochondrial activity (MTT) assay and long-term survival measured by colony-forming ability. Each cell line had a different pattern of DNA breakage and base damage vs. nanoparticle (NP) concentration and treatment time. There was no increase in the frequencies of histone γH2AX foci and micronuclei as compared to those in the untreated cells. In parallel with these results, no induction of apoptosis has been found in none of the cell lines tested. The reported experiments provided no evidence of the long-term in vitro toxicity of Aeroxide P25 TiO2 NPs, despite a slight decrease in mitochondrial activity and cell survival during the first 72 h.","PeriodicalId":0,"journal":{"name":"","volume":"20 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.2478/nuka-2024-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We studied the effects of Aeroxide P25 titanium dioxide nanoparticles (TiO2 NPs) with a diameter of 21 nm on induction of DNA damage and long-term survival of three human cell lines: hepatocellular liver carcinoma HepG2, colorectal adenocarcinoma HT29 and lung carcinoma A549. The endpoints examined were DNA breakage estimated by the comet assay and oxidative base damage recognized by formamide-pyrimidine glycosylase (FPG) estimated with the FPG+ comet assay, frequencies of histone γH2AX foci and micronuclei, apoptosis, cell metabolic activity measured by mitochondrial activity (MTT) assay and long-term survival measured by colony-forming ability. Each cell line had a different pattern of DNA breakage and base damage vs. nanoparticle (NP) concentration and treatment time. There was no increase in the frequencies of histone γH2AX foci and micronuclei as compared to those in the untreated cells. In parallel with these results, no induction of apoptosis has been found in none of the cell lines tested. The reported experiments provided no evidence of the long-term in vitro toxicity of Aeroxide P25 TiO2 NPs, despite a slight decrease in mitochondrial activity and cell survival during the first 72 h.