Design and Experimentation of a Hydrokinetic Turbine for Electricity Generation in Closed Pipes

Javier Armañanzas, Marina Alcalá, Juan Pablo Fuertes, Javier Leon, Alexia Torres, Miguel Gil
{"title":"Design and Experimentation of a Hydrokinetic Turbine for Electricity Generation in Closed Pipes","authors":"Javier Armañanzas, Marina Alcalá, Juan Pablo Fuertes, Javier Leon, Alexia Torres, Miguel Gil","doi":"10.37394/232013.2024.19.7","DOIUrl":null,"url":null,"abstract":"In the present research work, a device for electrical energy generation to be used in water pipelines has been designed, simulated, and tested. To achieve this, a study of the most influential parameters involved in the experiment has been carried out and both, the turbine model and the geometry of the experimental test pipe, have been selected through CFD simulations. Next, the Design of Experiments (DOE) has been used to obtain the configuration with a higher energy extraction from running water. Finally, the turbine and the test pipe section have been manufactured by 3D printing and the experimental tests have been carried out with the optimal configuration to validate the results obtained in the CFD simulations. To simulate the exchange of energy between the water and the turbine, the CFD software SIMULIA XFlow has been used.","PeriodicalId":510564,"journal":{"name":"WSEAS TRANSACTIONS ON FLUID MECHANICS","volume":"5 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS TRANSACTIONS ON FLUID MECHANICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232013.2024.19.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the present research work, a device for electrical energy generation to be used in water pipelines has been designed, simulated, and tested. To achieve this, a study of the most influential parameters involved in the experiment has been carried out and both, the turbine model and the geometry of the experimental test pipe, have been selected through CFD simulations. Next, the Design of Experiments (DOE) has been used to obtain the configuration with a higher energy extraction from running water. Finally, the turbine and the test pipe section have been manufactured by 3D printing and the experimental tests have been carried out with the optimal configuration to validate the results obtained in the CFD simulations. To simulate the exchange of energy between the water and the turbine, the CFD software SIMULIA XFlow has been used.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于封闭管道发电的水动力涡轮机的设计与实验
在本研究工作中,设计、模拟和测试了一种用于输水管道的发电装置。为此,我们对实验中影响最大的参数进行了研究,并通过 CFD 仿真选择了涡轮机模型和实验测试管道的几何形状。接着,利用实验设计(DOE)获得了从流水中提取更多能量的配置。最后,通过三维打印技术制造了涡轮机和试验管道部分,并使用最佳配置进行了实验测试,以验证 CFD 模拟获得的结果。为了模拟水和涡轮机之间的能量交换,我们使用了 CFD 软件 SIMULIA XFlow。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computing a Class of Blow-up Solutions for the Navier-Stokes Equations Effect of Wavy Interface on Natural Convection in Square Cavity Partially Filled with Nanofluid and Porous Medium using Buongiorno Model Improvement of Aerodynamic Performance of NACA 2412 Airfoil using Active and Passive Control Techniques Bioinspired Genetic-Algorithm Optimized Ground-Effect Wing Design: Flight Performance Benefits and Aircraft Stability Effects Three-dimensional Effects on Gap-Resonances in Twin-Hull Vessels in Time-Harmonic Vertical Oscillations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1