{"title":"Pixelated non-volatile programmable photonic integrated circuits with 20-level intermediate states","authors":"Wenyu Chen, Shiyuan Liu, Jinlong Zhu","doi":"10.1088/2631-7990/ad2c60","DOIUrl":null,"url":null,"abstract":"\n Multi-level programmable photonic integrated circuits and optical metasurfaces have gained widespread attention in many fields, such as neuromorphic photonics, optical communications, and quantum information. In this paper, we propose pixelated programmable Si3N4 photonic integrated circuits with record-high 20-level intermediate states at 785 nm wavelength. Such flexibility in phase or amplitude modulation is achieved by a programmable Sb2S3 matrix, the footprint of whose elements can be as small as 1.2 μm, limited only by the optical diffraction limit of an in-house developed pulsed laser writing system. We believe, our work lays the foundation for laser-writing ultra-high-level (20 levels and even more) programmable photonic systems and metasurfaces based on phase change materials, which could catalyze diverse applications such as programmable neuromorphic photonics, biosensing, optical computing, photonic quantum computing, and reconfigurable metasurfaces.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/ad2c60","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-level programmable photonic integrated circuits and optical metasurfaces have gained widespread attention in many fields, such as neuromorphic photonics, optical communications, and quantum information. In this paper, we propose pixelated programmable Si3N4 photonic integrated circuits with record-high 20-level intermediate states at 785 nm wavelength. Such flexibility in phase or amplitude modulation is achieved by a programmable Sb2S3 matrix, the footprint of whose elements can be as small as 1.2 μm, limited only by the optical diffraction limit of an in-house developed pulsed laser writing system. We believe, our work lays the foundation for laser-writing ultra-high-level (20 levels and even more) programmable photonic systems and metasurfaces based on phase change materials, which could catalyze diverse applications such as programmable neuromorphic photonics, biosensing, optical computing, photonic quantum computing, and reconfigurable metasurfaces.
期刊介绍:
The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.