High Spatial Resolution Leaf Area Index Estimation for Woodland in Saihanba Forestry Center, China

Remote. Sens. Pub Date : 2024-02-22 DOI:10.3390/rs16050764
Changjing Wang, Hongmin Zhou, Guodong Zhang, Jianguo Duan, Moxiao Lin
{"title":"High Spatial Resolution Leaf Area Index Estimation for Woodland in Saihanba Forestry Center, China","authors":"Changjing Wang, Hongmin Zhou, Guodong Zhang, Jianguo Duan, Moxiao Lin","doi":"10.3390/rs16050764","DOIUrl":null,"url":null,"abstract":"Owing to advancements in satellite remote sensing technology, the acquisition of global land surface parameters, notably, the leaf area index (LAI), has become increasingly accessible. The Sentinel-2 (S2) satellite plays an important role in the monitoring of ecological environments and resource management. The prevalent use of the 20 m spatial resolution band in S2-based inversion models imposes significant limitations on the applicability of S2 data in applications requiring finer spatial resolution. Furthermore, although a substantial body of research on LAI retrieval using S2 data concentrates on agricultural landscapes, studies dedicated to forest ecosystems, although increasing, remain relatively less prevalent. This study aims to establish a viable methodology for retrieving 10 m resolution LAI data in forested regions. The empirical model of the soil adjusted vegetation index (SAVI), the backpack neural network based on simulated annealing (SA-BP) algorithm, and the variational heteroscedastic Gaussian process regression (VHGPR) model are established in this experiment based on the LAI data measured and the corresponding 10 m spatial resolution S2 satellite surface reflectance data in the Saihanba Forestry Center (SFC). The LAI retrieval performance of the three models is then validated using field data, and the error sources of the best performing VHGPR models (R2 of 0.8696 and RMSE of 0.5078) are further analyzed. Moreover, the VHGPR model stands out for its capacity to quantify the uncertainty in LAI estimation, presenting a notable advantage in assessing the significance of input data, eliminating redundant bands, and being well suited for uncertainty estimation. This feature is particularly valuable in generating accurate LAI products, especially in regions characterized by diverse forest compositions.","PeriodicalId":20944,"journal":{"name":"Remote. Sens.","volume":"10 14","pages":"764"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote. Sens.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/rs16050764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Owing to advancements in satellite remote sensing technology, the acquisition of global land surface parameters, notably, the leaf area index (LAI), has become increasingly accessible. The Sentinel-2 (S2) satellite plays an important role in the monitoring of ecological environments and resource management. The prevalent use of the 20 m spatial resolution band in S2-based inversion models imposes significant limitations on the applicability of S2 data in applications requiring finer spatial resolution. Furthermore, although a substantial body of research on LAI retrieval using S2 data concentrates on agricultural landscapes, studies dedicated to forest ecosystems, although increasing, remain relatively less prevalent. This study aims to establish a viable methodology for retrieving 10 m resolution LAI data in forested regions. The empirical model of the soil adjusted vegetation index (SAVI), the backpack neural network based on simulated annealing (SA-BP) algorithm, and the variational heteroscedastic Gaussian process regression (VHGPR) model are established in this experiment based on the LAI data measured and the corresponding 10 m spatial resolution S2 satellite surface reflectance data in the Saihanba Forestry Center (SFC). The LAI retrieval performance of the three models is then validated using field data, and the error sources of the best performing VHGPR models (R2 of 0.8696 and RMSE of 0.5078) are further analyzed. Moreover, the VHGPR model stands out for its capacity to quantify the uncertainty in LAI estimation, presenting a notable advantage in assessing the significance of input data, eliminating redundant bands, and being well suited for uncertainty estimation. This feature is particularly valuable in generating accurate LAI products, especially in regions characterized by diverse forest compositions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中国塞罕坝林业中心林地的高空间分辨率叶面积指数估算
由于卫星遥感技术的进步,获取全球地表参数,特别是叶面积指数(LAI)变得越来越容易。哨兵-2(S2)卫星在生态环境监测和资源管理方面发挥着重要作用。基于 S2 的反演模型普遍使用 20 米空间分辨率波段,这对 S2 数据在需要更精细空间分辨率的应用中的适用性造成了很大限制。此外,尽管利用 S2 数据进行 LAI 检索的大量研究都集中在农业景观方面,但专门针对森林生态系统的研究虽然在增加,但仍然相对较少。本研究旨在建立一套可行的方法,用于检索森林地区 10 米分辨率的 LAI 数据。本实验基于赛罕坝林业中心(SFC)测得的 LAI 数据和相应的 10 米空间分辨率 S2 卫星表面反射率数据,建立了土壤调整植被指数(SAVI)经验模型、基于模拟退火(SA-BP)算法的背包神经网络和变异异速高斯过程回归(VHGPR)模型。然后利用实地数据验证了三个模型的 LAI 检索性能,并进一步分析了性能最佳的 VHGPR 模型(R2 为 0.8696,RMSE 为 0.5078)的误差来源。此外,VHGPR 模型还能量化 LAI 估算中的不确定性,在评估输入数据的重要性、消除冗余带和进行不确定性估算方面具有显著优势。这一特点对于生成精确的 LAI 产品尤为重要,尤其是在森林成分多样化的地区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influences of Different Factors on Gravity Wave Activity in the Lower Stratosphere of the Indian Region Estimating Sugarcane Aboveground Biomass and Carbon Stock Using the Combined Time Series of Sentinel Data with Machine Learning Algorithms Dynamic Screening Strategy Based on Feature Graphs for UAV Object and Group Re-Identification The Expanding of Proglacial Lake Amplified the Frontal Ablation of Jiongpu Co Glacier since 1985 Investigation of Light-Scattering Properties of Non-Spherical Sea Salt Aerosol Particles at Varying Levels of Relative Humidity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1