High-performance liquid metal electromagnetic actuator fabricated by femtosecond laser

IF 18.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL ACS Energy Letters Pub Date : 2024-02-21 DOI:10.1088/2631-7990/ad23ee
Yiyu Chen, Hao Wu, Rui Li, Shaojun Jiang, Shuneng Zhou, Zehang Cui, Yuan Tao, Xinyuan Zheng, Qianqian Zhang, Jiawen Li, Guoqiang Li, Dong Wu, Jiaru Chu, Yanlei Hu
{"title":"High-performance liquid metal electromagnetic actuator fabricated by femtosecond laser","authors":"Yiyu Chen, Hao Wu, Rui Li, Shaojun Jiang, Shuneng Zhou, Zehang Cui, Yuan Tao, Xinyuan Zheng, Qianqian Zhang, Jiawen Li, Guoqiang Li, Dong Wu, Jiaru Chu, Yanlei Hu","doi":"10.1088/2631-7990/ad23ee","DOIUrl":null,"url":null,"abstract":"\n Small-scale electromagnetic soft actuators are characterized by a fast response and simple control, holding prospects in the field of soft and miniaturized robotics. The use of liquid metal (LM) to replace a rigid conductor inside soft actuators can reduce the rigidity and enhance the actuation performance and robustness. Despite research efforts, challenges persist in the flexible fabrication of LM soft actuators and in the improvement of actuation performance. To address these challenges, we developed a fast and robust electromagnetic soft microplate actuator based on a laser-induced selective adhesion transfer method. Equipped with unprecedentedly thin LM circuit and customized low Young’s modulus silicone rubber (1.03 kPa), our actuator exhibits an excellent deformation angle (265.25°) and actuation bending angular velocity (284.66 rad·s−1). Furthermore, multiple actuators have been combined to build an artificial gripper with a wide range of functionalities. Our actuator presents new possibilities for designing small-scale artificial machines and supports advancements in ultrafast soft and miniaturized robotics.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"135 4","pages":""},"PeriodicalIF":18.2000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/ad23ee","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Small-scale electromagnetic soft actuators are characterized by a fast response and simple control, holding prospects in the field of soft and miniaturized robotics. The use of liquid metal (LM) to replace a rigid conductor inside soft actuators can reduce the rigidity and enhance the actuation performance and robustness. Despite research efforts, challenges persist in the flexible fabrication of LM soft actuators and in the improvement of actuation performance. To address these challenges, we developed a fast and robust electromagnetic soft microplate actuator based on a laser-induced selective adhesion transfer method. Equipped with unprecedentedly thin LM circuit and customized low Young’s modulus silicone rubber (1.03 kPa), our actuator exhibits an excellent deformation angle (265.25°) and actuation bending angular velocity (284.66 rad·s−1). Furthermore, multiple actuators have been combined to build an artificial gripper with a wide range of functionalities. Our actuator presents new possibilities for designing small-scale artificial machines and supports advancements in ultrafast soft and miniaturized robotics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用飞秒激光制造的高性能液态金属电磁致动器
小型电磁软致动器具有响应速度快、控制简单的特点,在软机器人和微型机器人领域具有广阔的发展前景。使用液态金属(LM)替代软致动器内部的刚性导体,可以降低刚性,提高致动性能和鲁棒性。尽管开展了大量研究工作,但在灵活制造液态金属软致动器和提高致动性能方面仍存在挑战。为了应对这些挑战,我们开发了一种基于激光诱导选择性粘附转移方法的快速、坚固的电磁软微孔板致动器。我们的致动器配备了前所未有的超薄 LM 电路和定制的低杨氏模量硅橡胶(1.03 kPa),具有出色的变形角度(265.25°)和致动弯曲角速度(284.66 rad-s-1)。此外,我们还将多个致动器组合在一起,构建了一个具有多种功能的人工抓手。我们的致动器为设计小型人工机械提供了新的可能性,并为超快软机器人和微型机器人技术的发展提供了支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
期刊最新文献
Anode Design Concepts for Energy-Dense Sodium Batteries Lithium–Carbon Composite Anodes for Solid-State Lithium Metal Batteries CsPbBr3 Nanodiscs/Pb4S3Br2 Nanocrystal Heterostructures: Shape Anisotropy for Tailoring Exciton–Phonon Coupling Unexpected Role of Vanadium Dissolution in Activating Anion Redox Chemistry in Aqueous Zn–V2O5 Batteries Pit-Free Stripping in Discharge-Initiated Lithium Metal Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1