Shuangwei Li, W. van der Werf, Fang Gou, Junqi Zhu, Herman N C Berghuijs, Hu Zhou, Yan Guo, B. Li, Yuntao Ma, J. Evers
{"title":"An evaluation of Goudriaan's summary model for light interception in strip canopies, using functional-structural plant models","authors":"Shuangwei Li, W. van der Werf, Fang Gou, Junqi Zhu, Herman N C Berghuijs, Hu Zhou, Yan Guo, B. Li, Yuntao Ma, J. Evers","doi":"10.1093/insilicoplants/diae002","DOIUrl":null,"url":null,"abstract":"\n Dealing with heterogeneity in leaf canopies when calculating light interception per species in a mixed canopy is a challenge. Goudriaan developed a computationally simple, though conceptually sophisticated, model for light interception in strip canopies, which can be reasonably represented as “blocks”, such as vineyards and crop rows. This model is widely used, but there is no independent verification of the model. Hence, we developed a comparison of light interception calculations with Goudriaan’s model and with detailed spatially explicit three-dimensional functional-structural plant models (FSPM) of maize in which plant architecture can be represented explicitly. Two models were developed, one with small randomly oriented leaves in blocks, similar to Goudriaan’s assumption, which we refer to as the intermediate model (IM), and another with a realistic representation of individual plants with stems and leaves having shape, orientation, etc, referred as FSPM. In IM and FSPM, light interception was calculated using ray tracing. In Goudriaan’s model, the light extinction coefficient (k), including both its daily and seasonal average values, was generated using the FSPM. Correspondence between the three models was excellent in terms of light capture for different levels of crop height, leaf area and uniformity, with the difference less than 3.3%. The results are strong support for the use of Goudriaan's summary model for calculating light interception in strip canopies.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"60 2","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/insilicoplants/diae002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Dealing with heterogeneity in leaf canopies when calculating light interception per species in a mixed canopy is a challenge. Goudriaan developed a computationally simple, though conceptually sophisticated, model for light interception in strip canopies, which can be reasonably represented as “blocks”, such as vineyards and crop rows. This model is widely used, but there is no independent verification of the model. Hence, we developed a comparison of light interception calculations with Goudriaan’s model and with detailed spatially explicit three-dimensional functional-structural plant models (FSPM) of maize in which plant architecture can be represented explicitly. Two models were developed, one with small randomly oriented leaves in blocks, similar to Goudriaan’s assumption, which we refer to as the intermediate model (IM), and another with a realistic representation of individual plants with stems and leaves having shape, orientation, etc, referred as FSPM. In IM and FSPM, light interception was calculated using ray tracing. In Goudriaan’s model, the light extinction coefficient (k), including both its daily and seasonal average values, was generated using the FSPM. Correspondence between the three models was excellent in terms of light capture for different levels of crop height, leaf area and uniformity, with the difference less than 3.3%. The results are strong support for the use of Goudriaan's summary model for calculating light interception in strip canopies.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.