Split Bregman quantum noise removal algorithm for 3D reconstruction of neutron computed tomography image

Tengfei Zhu, Yang Liu, Zhi Luo, Xiaoping Ouyang
{"title":"Split Bregman quantum noise removal algorithm for 3D reconstruction of neutron computed tomography image","authors":"Tengfei Zhu, Yang Liu, Zhi Luo, Xiaoping Ouyang","doi":"10.1209/0295-5075/ad2ba6","DOIUrl":null,"url":null,"abstract":"\n The low intensity of the neutron source for neutron computed tomography (CT) results in a long acquisition time for a single projection, which causes the neutron projection data to contain a large amount of quantum noise. Quantum noise will degrade the quality of neutron CT reconstruction images. Therefore, an efficient quantum noise removal algorithm must be used in CT reconstruction. In this paper, an efficient quantum noise removal algorithm for neutron CT 3D image reconstruction is proposed by analysing classical image processing algorithms and quantum image processing algorithms, which employs the maximum likelihood expectation-maximization to reconstruct the image and split bregman to solve for the total variation (MLEM-SBTV). Experimental results show that MLEM-SBTV performs well in removing quantum noise and reconstructing the detailed structure of images.","PeriodicalId":503117,"journal":{"name":"Europhysics Letters","volume":"59 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Europhysics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1209/0295-5075/ad2ba6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The low intensity of the neutron source for neutron computed tomography (CT) results in a long acquisition time for a single projection, which causes the neutron projection data to contain a large amount of quantum noise. Quantum noise will degrade the quality of neutron CT reconstruction images. Therefore, an efficient quantum noise removal algorithm must be used in CT reconstruction. In this paper, an efficient quantum noise removal algorithm for neutron CT 3D image reconstruction is proposed by analysing classical image processing algorithms and quantum image processing algorithms, which employs the maximum likelihood expectation-maximization to reconstruct the image and split bregman to solve for the total variation (MLEM-SBTV). Experimental results show that MLEM-SBTV performs well in removing quantum noise and reconstructing the detailed structure of images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于中子计算机断层扫描图像三维重建的分割布雷格曼量子噪声去除算法
中子计算机断层扫描(CT)的中子源强度低,导致单次投影的采集时间长,从而使中子投影数据包含大量量子噪声。量子噪声会降低中子 CT 重建图像的质量。因此,在 CT 重建中必须使用高效的量子噪声去除算法。本文通过分析经典图像处理算法和量子图像处理算法,提出了一种用于中子 CT 3D 图像重建的高效量子噪声去除算法,该算法采用最大似然期望最大化重建图像,并采用分裂布里格曼求解总变异(MLEM-SBTV)。实验结果表明,MLEM-SBTV 在消除量子噪声和重建图像细节结构方面表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large self-heating by trapped-flux reduction in Sn-Pb solders Imperfect diffusion-controlled reactions for stochastic processes with memory Schrödinger evolution of a scalar field in Riemannian and pseudo Riemannian expanding metrics Evolution of the crack patterns in nanostructured films with subsequent wetting and drying cycles Narrowband stimulated Raman scattering and molecular modulation in anti-resonant hollow-core fibres
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1