Ahmed Adil Nafea, Mustafa S. Ibrahim, Abdulrahman A. Mukhlif, Mohammed M. AL-Ani, Nazlia Omar
{"title":"An Ensemble Model for Detection of Adverse Drug Reactions","authors":"Ahmed Adil Nafea, Mustafa S. Ibrahim, Abdulrahman A. Mukhlif, Mohammed M. AL-Ani, Nazlia Omar","doi":"10.14500/aro.11403","DOIUrl":null,"url":null,"abstract":"The detection of adverse drug reactions (ADRs) plays a necessary role in comprehending the safety and benefit profiles of medicines. Although spontaneous reporting stays the standard approach for ADR documents, it suffers from significant under reporting rates and limitations in terms of treatment inspection. This study proposes an ensemble model that combines decision trees, support vector machines, random forests, and adaptive boosting (ADA-boost) to improve ADR detection. The experimental evaluation applied the benchmark data set and many preprocessing techniques such as tokenization, stop-word removal, stemming, and utilization of Point-wise Mutual Information. In addition, two term representations, namely, term frequency-inverse document frequency and term frequency, are utilized. The proposed ensemble model achieves an F-measure of 89% on the dataset. The proposed ensemble model shows its ability in detecting ADR to be a favored option in achieving both accuracy and clarity.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"168 ","pages":""},"PeriodicalIF":17.7000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14500/aro.11403","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The detection of adverse drug reactions (ADRs) plays a necessary role in comprehending the safety and benefit profiles of medicines. Although spontaneous reporting stays the standard approach for ADR documents, it suffers from significant under reporting rates and limitations in terms of treatment inspection. This study proposes an ensemble model that combines decision trees, support vector machines, random forests, and adaptive boosting (ADA-boost) to improve ADR detection. The experimental evaluation applied the benchmark data set and many preprocessing techniques such as tokenization, stop-word removal, stemming, and utilization of Point-wise Mutual Information. In addition, two term representations, namely, term frequency-inverse document frequency and term frequency, are utilized. The proposed ensemble model achieves an F-measure of 89% on the dataset. The proposed ensemble model shows its ability in detecting ADR to be a favored option in achieving both accuracy and clarity.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.