PM2.5-bound polycyclic aromatic hydrocarbons (PAHs): quantification and source prediction studies in the ambient air of automobile workshop using the molecular diagnostic ratio
{"title":"PM2.5-bound polycyclic aromatic hydrocarbons (PAHs): quantification and source prediction studies in the ambient air of automobile workshop using the molecular diagnostic ratio","authors":"Gregory E. Onaiwu, Ikhazuagbe H. Ifijen","doi":"10.1007/s44273-024-00027-y","DOIUrl":null,"url":null,"abstract":"<div><p>The presence of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere has been linked to health concerns, including cancer. Automobile workshops are significant contributors to PAH emissions due to their operations. Hence, this investigation aimed to identify and quantify the sources of PM2.5-bound PAHs in the ambient air of automobile workshops in Benin City, Nigeria, using molecular diagnostic ratios. PM2.5 samples were collected from 60 automobiles over 1 year, during the rainy (April to November) and dry (December to March) seasons of 2019. Sample collection utilized a low-volume air sampler with quartz filter paper, and extraction was performed using a 1:1 mixture of acetone and dichloromethane. The analysis involved an HP Agilent Technology 6890 Gas Chromatography (GC) system with a flame ionization detector. The annual average concentrations of PM2.5-bound PAHs in Benin City were 269.87 ± 249.32 ng/m<sup>3</sup> (dry season) and 216.30 ± 204.89 ng/m<sup>3</sup> (wet season). Molecular diagnostic ratios, such as Fl/(Fl + Py), An/(An + Phe), BaP/(BaP + Chry), BbF/BkF, InP/(InP + BghiP), and BaA/(BaA + Chr), aided in identifying PAH sources. Gasoline combustion, diesel combustion, traffic emissions, and emissions from automobile panel welders were found to be the primary sources of PAHs near vehicle workshops. These findings provide crucial insights for developing effective strategies to reduce emissions and protect public health in the air surrounding automobile workshops in Benin City.</p></div>","PeriodicalId":45358,"journal":{"name":"Asian Journal of Atmospheric Environment","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44273-024-00027-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Atmospheric Environment","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44273-024-00027-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The presence of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere has been linked to health concerns, including cancer. Automobile workshops are significant contributors to PAH emissions due to their operations. Hence, this investigation aimed to identify and quantify the sources of PM2.5-bound PAHs in the ambient air of automobile workshops in Benin City, Nigeria, using molecular diagnostic ratios. PM2.5 samples were collected from 60 automobiles over 1 year, during the rainy (April to November) and dry (December to March) seasons of 2019. Sample collection utilized a low-volume air sampler with quartz filter paper, and extraction was performed using a 1:1 mixture of acetone and dichloromethane. The analysis involved an HP Agilent Technology 6890 Gas Chromatography (GC) system with a flame ionization detector. The annual average concentrations of PM2.5-bound PAHs in Benin City were 269.87 ± 249.32 ng/m3 (dry season) and 216.30 ± 204.89 ng/m3 (wet season). Molecular diagnostic ratios, such as Fl/(Fl + Py), An/(An + Phe), BaP/(BaP + Chry), BbF/BkF, InP/(InP + BghiP), and BaA/(BaA + Chr), aided in identifying PAH sources. Gasoline combustion, diesel combustion, traffic emissions, and emissions from automobile panel welders were found to be the primary sources of PAHs near vehicle workshops. These findings provide crucial insights for developing effective strategies to reduce emissions and protect public health in the air surrounding automobile workshops in Benin City.